Advertisement

DNA Barcoding: Molecular Positioning of Living Fossils (Horseshoe Crab)

  • Bishal Dhar
  • Apurba Ghose
  • Sharbadeb Kundu
  • Sorokhaibam Malvika
  • Ningthoujam Neelima Devi
  • Amalesh Choudhury
  • Sudipta Ghorai
  • Subrata Trivedi
  • Sankar Kumar GhoshEmail author
Chapter

Abstract

Living fossils are the important components of biodiversity. They represent the connection between the extinct and extant species. A living fossil is a living species that appears to be similar to a species otherwise known only from fossils, typically with no close living relatives and the extant species. The study of primitive species gives an idea about the ancestors from which they diverged and bring out many surprising facts which are unknown to the world. In a case study, species belonging to the phylum Arthropoda, Brachiopoda and Molluscs were collected from Sundarbans where Horshshoe Crab was the living fossils (Carcinoscorpius rotundicauda). Lingula sp and some crab species were included as the outgroup. To position this living fossil, DNA barcoding approach was employed as per standard protocol. COI sequencing and subsequently nucleotide analysis of all the species were done and also the molecular clock was constructed to locate their position along with their divergence time in correspondence with the other sequences of the allied taxa viz, Limulus polyphemus, Tachypleus gigas etc. It is found that the Carcinoscorpius rotundicauda are more closely related to its allied taxon Tachypleus gigas as compared to Limulus poluphemus and their divergence period is calculated which is supposed to be the 550 million years ago. Thus, DNA barcoding approach is a useful technique to properly identify species and to construct phylogenetic relationship among the species and subsequent assessment of the species divergence time.

Keywords

Biodiversity DNA barcode Horseshoe crab Living fossils 

References

  1. Avise JC, Bowen BW (1994) Investigating sea turtle migration using DNA markers. Curr Opin Genet Dev 4:882–886PubMedCrossRefGoogle Scholar
  2. Baek SY, Choi EH, Jang KH, Ryu SH, Park SM et al (2014) Complete mitochondrial genomes of Carcinoscorpius rotundicauda and Tachypleus tridentatus (Xiphosura, Arthropoda) and implications for chelicerate phylogenetic studies. Int J Biol Sci 10:479–489PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bhattacharjee MJ, Laskar BA, Dhar B, Ghosh SK (2012) Identification and re-evaluation of freshwater catfishes through DNA barcoding. PLoS ONE 7:e49950PubMedPubMedCentralCrossRefGoogle Scholar
  4. Borisenko AV, Lim BK, Ivanova NV, Hanner RH, Hebert PD (2008) DNA barcoding in surveys of small mammal communities: a field study in Suriname. Mol Ecol Resour 8:471–479PubMedCrossRefGoogle Scholar
  5. Briggs DE, Moore RA, Shultz JW, Schweigert G (2005) Mineralization of soft-part anatomy and invading microbes in the horseshoe crab Mesolimulus from the Upper Jurassic Lagerstatte of Nusplingen, Germany. Proc Biol Sci 272:627–632PubMedPubMedCentralCrossRefGoogle Scholar
  6. Briggs DE, Siveter DJ, Sutton MD, Garwood RJ, Legg D (2012) Silurian horseshoe crab illuminates the evolution of arthropod limbs. Proc Natl Acad Sci USA 109:15702–15705PubMedPubMedCentralCrossRefGoogle Scholar
  7. Carroll RL (1997) Patterns and processes of vertebrate evolution. Cambridge University Press, New York. xvi, 448 ppGoogle Scholar
  8. Chakraborty M, Ghosh SK (2014) An assessment of the DNA barcodes of Indian freshwater fishes. Gene 537:20–28PubMedCrossRefGoogle Scholar
  9. Cox AJ, Hebert PD (2001) Colonization, extinction, and phylogeographic patterning in a freshwater crustacean. Mol Ecol 10:371–386PubMedCrossRefGoogle Scholar
  10. Crow JF, Dove WF (2000) Perspectives on genetics: anecdotal, historical, and critical commentaries, 1987–1998. University of Wisconsin Press, Madison. xiii, 723 ppGoogle Scholar
  11. Dhar B, Ghosh SK (2015) Genetic assessment of ornamental fish species from North East India. Gene 555:382–392PubMedCrossRefGoogle Scholar
  12. Dick MH, Lidgard S, Gordon DP, Mawatari SF (2009) The origin of ascophoran bryozoans was historically contingent but likely. Proc Biol Sci 276:3141–3148PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dunlop JA, Anderson LI, Kerp H, Hass H (2003) Palaeontology: preserved organs of Devonian harvestmen. Nature 425:916PubMedCrossRefGoogle Scholar
  14. Faurby S, King TL, Obst M, Hallerman EM, Pertoldi C et al (2010) Population dynamics of American horseshoe crabs—historic climatic events and recent anthropogenic pressures. Mol Ecol 19:3088–3100PubMedCrossRefGoogle Scholar
  15. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  16. Freeman G (1999) Regional specification during embryogenesis in the inarticulate brachiopod Discinisca. Dev Biol 209:321–339PubMedCrossRefGoogle Scholar
  17. Garcia-Horsman JA, Barquera B, Rumbley J, Ma J, Gennis RB (1994) The superfamily of heme-copper respiratory oxidases. J Bacteriol 176:5587–5600PubMedPubMedCentralGoogle Scholar
  18. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PD (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 103:968–971PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hebert PD, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321PubMedPubMedCentralCrossRefGoogle Scholar
  20. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  21. Kin A, Blazejowski B (2014) The horseshoe crab of the genus Limulus: living fossil or stabilomorph? PLoS ONE 9:e108036PubMedPubMedCentralCrossRefGoogle Scholar
  22. Komiya H, Shimizu N, Kawakami M, Takemura S (1980) Nucleotide sequence of 5S ribosomal RNA from Lingula anatina. A study on the molecular evolution of 5S ribosomal RNA from a living fossil. J Biochem 88:1449–1456PubMedGoogle Scholar
  23. Kosakyan A, Heger TJ, Leander BS, Todorov M, Mitchell EA et al (2012) COI barcoding of Nebelid testate amoebae (Amoebozoa: Arcellinida): extensive cryptic diversity and redefinition of the Hyalospheniidae Schultze. Protist 163:415–434PubMedCrossRefGoogle Scholar
  24. Laskar BA, Bhattacharjee MJ, Dhar B, Mahadani P, Kundu S et al (2013) The species dilemma of northeast Indian mahseer (Actinopterygii: Cyprinidae): DNA barcoding in clarifying the riddle. PLoS ONE 8:e53704PubMedPubMedCentralCrossRefGoogle Scholar
  25. Lee MS (1999) Molecular clock calibrations and metazoan divergence dates. J Mol Evol 49:385–391PubMedCrossRefGoogle Scholar
  26. Legg DA (2014) Sanctacaris uncata: the oldest chelicerate (Arthropoda). Naturwissenschaften 101:1065–1073PubMedCrossRefGoogle Scholar
  27. Legg DA, Sutton MD, Edgecombe GD, Caron JB (2012) Cambrian bivalved arthropod reveals origin of arthrodization. Proc Biol Sci 279:4699–4704PubMedPubMedCentralCrossRefGoogle Scholar
  28. Lynch M, Jarrell PE (1993) A method for calibrating molecular clocks and its application to animal mitochondrial DNA. Genetics 135:1197–1208PubMedPubMedCentralGoogle Scholar
  29. Mahadani P, Ghosh SK (2013) DNA Barcoding: a tool for species identification from herbal juices. DNA Barcodes 1:35–38CrossRefGoogle Scholar
  30. Manna S, Chaudhuri K, Bhattacharyya S, Bhattacharyya M (2010) Dynamics of Sundarban estuarine ecosystem: eutrophication induced threat to mangroves. Saline Syst 6:8PubMedPubMedCentralCrossRefGoogle Scholar
  31. Masta SE, Longhorn SJ, Boore JL (2009) Arachnid relationships based on mitochondrial genomes: asymmetric nucleotide and amino acid bias affects phylogenetic analyses. Mol Phylogenet Evol 50:117–128PubMedCrossRefGoogle Scholar
  32. Nossa CW, Havlak P, Yue JX, Lv J, Vincent KY et al (2014) Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication. Gigascience 3:9PubMedPubMedCentralCrossRefGoogle Scholar
  33. Obst M, Faurby S, Bussarawit S, Funch P (2012) Molecular phylogeny of extant horseshoe crabs (Xiphosura, Limulidae) indicates Paleogene diversification of Asian species. Mol Phylogenet Evol 62:21–26PubMedCrossRefGoogle Scholar
  34. Purvis A, Gittleman JL, Brooks T (2005) Phylogeny and conservation. Cambridge University Press, Cambridge. xiii, 431 ppGoogle Scholar
  35. Rehm P, Pick C, Borner J, Markl J, Burmester T (2012) The diversity and evolution of chelicerate hemocyanins. BMC Evol Biol 12:19PubMedPubMedCentralCrossRefGoogle Scholar
  36. Rubinoff D (2006) Utility of mitochondrial DNA barcodes in species conservation. Conserv Biol 20:1026–1033PubMedCrossRefGoogle Scholar
  37. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  38. Schoenemann B, Clarkson EN (2013) Discovery of some 400 million year-old sensory structures in the compound eyes of trilobites. Sci Rep 3:1429PubMedPubMedCentralCrossRefGoogle Scholar
  39. Sharma PP, Tarazona OA, Lopez DH, Schwager EE, Cohn MJ et al (2015) A conserved genetic mechanism specifies deutocerebral appendage identity in insects and arachnids. Proc Biol Sci 282:20150698PubMedPubMedCentralCrossRefGoogle Scholar
  40. Shishikura F, Nakamura S, Takahashi K, Sekiguchi K (1982) Horseshoe crab phylogeny based on amino acid sequences of the fibrino‐peptide‐like peptide C. J Exp Zool Part A 223(1):89–91Google Scholar
  41. Shishikura F, Sekiguchi K (1984) Studies on perivitelline fluid of horseshoe crab embryo. II. Purification of agglutinin-binding substance from the perivitelline fluid of Tachypleus gigas embryo. J Biochem 96:629–636PubMedGoogle Scholar
  42. Silvestro D, Antonelli A, Salamin N, Quental TB (2015) The role of clade competition in the diversification of North American canids. Proc Natl Acad Sci USA 112:8684–8689PubMedPubMedCentralCrossRefGoogle Scholar
  43. Simmons RB, Weller SJ (2001) Utility and evolution of cytochrome b in insects. Mol Phylogenet Evol 20:196–210PubMedCrossRefGoogle Scholar
  44. Srimal S, Miyata T, Kawabata S, Iwanaga S (1985) The complete amino acid sequence of coagulogen isolated from Southeast Asian horseshoe crab, Carcinoscorpius rotundicauda. J Biochem 98:305–318PubMedGoogle Scholar
  45. Staton JL, Daehler LL, Brown WM (1997) Mitochondrial gene arrangement of the horseshoe crab Limulus polyphemus L.: conservation of major features among arthropod classes. Mol Biol Evol 14:867–874PubMedCrossRefGoogle Scholar
  46. Stoeckle MY, Hebert PD (2008) Barcode of life. Sci Am 299:82–86, 88Google Scholar
  47. Sykes B (1999) The molecular genetics of European ancestry. Philos Trans R Soc Lond B Biol Sci 354:131–138. Discussion 138–139Google Scholar
  48. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedPubMedCentralCrossRefGoogle Scholar
  49. Trivedi S, Affan R, Allesa AHA, Ansari AA, Dhar B, Mahadani P, Ghosh SK (2014) DNA BARcoding of Red Sea fishes from Saudi Arabia—the first approach. DNA Barcodes 2:17–20CrossRefGoogle Scholar
  50. Trivedi S, Aloufi AA, Ansari AA, Ghosh SK (2015) Molecular phylogeny of oysters belonging to the genus Crassostrea through DNA barcoding. J Entomol Zool Stud 3(1):21–26Google Scholar
  51. Trivedi S, Aloufi AA, Ansari AA, Ghosh SK (2016a) Role of DNA barcoding in marine biodiversity assessment and conservation: an update. Saudi J Biolog Sci 23(2):161–171CrossRefGoogle Scholar
  52. Trivedi S, Aloufi AA, Rehman H, Saggu S, Ghosh SK (2016b) DNA barcoding: tool for assessing species identification in Reptilia. J Entomol Zool Stud 4(1):132–137Google Scholar
  53. Trivedi S, Ansari AA, Rehman H, Saggu S, Abbas ZK, Ghosh SK (2016c) DNA barcoding as a molecular tool for the assessment of plant biodiversity. In: Ansari AA, Gill SS (eds) Plant biodiversity: monitoring assessment and conservation. CABI Publications, UK (in press)Google Scholar
  54. Van Roy P, Orr PJ, Botting JP, Muir LA, Vinther J et al (2010) Ordovician faunas of Burgess Shale type. Nature 465:215–218PubMedCrossRefGoogle Scholar
  55. Vasquez MC, Murillo A, Brockmann HJ, Julian D (2015) Multiple stressor interactions influence embryo development rate in the American horseshoe crab, Limulus polyphemus. J Exp Biol 218:2355–2364PubMedCrossRefGoogle Scholar
  56. Wares JP, Cunningham CW (2001) Phylogeography and historical ecology of the North Atlantic intertidal. Evolution 55:2455–2469PubMedCrossRefGoogle Scholar
  57. Xia X (2000) Phylogenetic relationship among horseshoe crab species: effect of substitution models on phylogenetic analyses. Syst Biol 49:87–100PubMedCrossRefGoogle Scholar
  58. Zhang DX, Hewitt GM (1997) Assessment of the universality and utility of a set of conserved mitochondrial COI primers in insects. Insect Mol Biol 6:143–150PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bishal Dhar
    • 1
  • Apurba Ghose
    • 1
  • Sharbadeb Kundu
    • 1
  • Sorokhaibam Malvika
    • 1
  • Ningthoujam Neelima Devi
    • 1
  • Amalesh Choudhury
    • 2
  • Sudipta Ghorai
    • 3
  • Subrata Trivedi
    • 4
  • Sankar Kumar Ghosh
    • 1
    Email author
  1. 1.Department of BiotechnologyAssam UniversitySilcharIndia
  2. 2.Department of Marine ScienceS.D. Marine Biological Research InstituteSunderbanIndia
  3. 3.Department of Zoology, Egra SSB CollegeVidyasagar UniversityMidnaporeIndia
  4. 4.Department of BiologyUniversity of TabukTabukSaudi Arabia

Personalised recommendations