Skip to main content

DNA Barcoding in the Marine Habitat: An Overview

  • Chapter
  • First Online:

Abstract

Major part of our planet includes the marine habitat which faces severe threat due to overexploitation of its bio resources. Assessment of biodiversity in the massive and diverse marine ecosystem is a challenging task. In this introductory chapter, we give a brief description of the marine habitat and types of marine organisms, followed by the concept of DNA barcoding. We also describe the applications and different initiatives of DNA barcoding in the marine ecosystem. A brief account of DNA barcoding in marine fungi, different groups of animals and plants is also elucidated. This chapter gives a bird’s eye view on the DNA barcoding in the marine perspective.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad I, Fatma Z, Yazdani SS (2013) DNA barcode and lipid analysis of new marine algae potential for biofuel. Algal Res 2:10–15. http://dx.doi.org/10.1016/j.algal.2012.10.003

    Google Scholar 

  • Alfonsi E, Méheust E, Fuchs S (2013) The use of DNA barcoding to monitor the marine mammal biodiversity along the French Atlantic coast. In: Nagy ZT, Backeljau T, De Meyer M, Jordaens K (eds) DNA barcoding: a practical tool for fundamental and applied biodiversity research. ZooKeys 365:5–24. http://dx.doi.org/10.3897/zookeys.365.5873

  • Aliabadian M, Beentjes KK, Roselaar CS (2013) DNA barcoding of Dutch birds. In: Nagy ZT, Backeljau T, De Meyer M, Jordaens K (eds) DNA barcoding: a practical tool for fundamental and applied biodiversity research. ZooKeys 365:25–48. http://dx.doi.org/10.3897/zookeys.365.6287

  • Amin G, Biswas S, Zaman S, Pramanick P, Trivedi S, Mitra A (2015) Prediction of dissolved oxygen in Indian sundarbans: vision 2050. Int Adv Res J Sci Eng Technol 2(12):31–33

    Article  Google Scholar 

  • Andreakis N, Høj L, Kearns P, Hall MR, Ericson G, Cobb RE et al (2015) Diversity of marine-derived fungal cultures exposed by DNA barcodes: the algorithm matters. PLoS ONE 10(8):e0136130. doi:10.1371/journal.pone.0136130

    Article  PubMed  PubMed Central  Google Scholar 

  • Ardura A, Planes S, Garcia-Vazquez E (2013) Applications of DNA barcoding to fish landings: authentication and diversity assessment. In: Nagy ZT, Backeljau T, De Meyer M, Jordaens K (eds) DNA barcoding: a practical tool for fundamental and applied biodiversity research. ZooKeys 365:49–65. http://dx.doi.org/10.3897/zookeys.365.6409

  • Baldwin CC, Johnson GD (2014) Connectivity across the Caribbean sea: DNA barcoding and morphology unite an enigmatic fish larva from the Florida straits with a new species of sea bass from deep reefs off Curaçao. PLoS ONE 9(5):e97661. doi:10.1371/journal.pone.0097661

    Article  PubMed  PubMed Central  Google Scholar 

  • Belinky F, Amir Szitenberg A, Goldfarb I, Feldstein T, Wörheide G, Ilan M, Huchon D (2012) ALG11—a new variable DNA marker for sponge phylogeny: comparison of phylogenetic performances with the 18S rDNA and the COI gene. Mol Phylogenet Evol 63:702–713

    Article  CAS  PubMed  Google Scholar 

  • Bhadury P, Austen MC, Bilton DT, Lambshead PJD, Rogers AD, Smerdon GR (2006) Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes. Mar Ecol Prog Ser 320:1–9

    Article  CAS  Google Scholar 

  • Bhattacharjee D, Samanta B, Danda AA (2013) Temporal succession of phytoplankton assemblages in a tidal creek system of the Sundarbans Mangroves: an integrated approach. Int J Biodiv. http://dxdoi.org/10.1155/2013/824543

  • Blanco-Bercial L, Álvarez-Marqués F, Bucklin A (2011) Comparative phylogeography and connectivity of sibling species of the marine copepod Clausocalanus (Calanoida). J Exp Mar Biol Ecol 404:108–115

    Article  Google Scholar 

  • Blanco-Bercial L, Cornils A, Copley N, Bucklin A (2014) DNA barcoding of marine Copepods: assessment of analytical approaches to species identification. PLoS Curr 6. http://dx.doi.org/10.1371/currents.tol.cdf8b74881f87e3b01d56b43791626d2

  • Böttger-Schnack R, Machida R (2011) Comparison of morphological and molecular traits for species identification and taxonomic grouping of oncaeid copepods. Hydrobiologia 666:111–125

    Google Scholar 

  • Briggs JC (1994) Species-diversity––land and sea compared. Syst Biol 43:130–135

    Article  Google Scholar 

  • Bucklin A, Frost BW (2009) Morphological and molecular phylogenetic analysis of evolutionary lineages within Clausocalanus (Copepoda: Calanoida). J Crust Biol 29:111–120

    Article  Google Scholar 

  • Bucklin A, Hopcroft RR, Kosobokova KN, Nigro LM, Ortman BD et al (2010a) DNA barcoding of Arctic Ocean holozooplankton for species identification and recognition. Deep-Sea Res II 57:40–48

    Google Scholar 

  • Bucklin A, Ortman BD, Jennings RM, Nigro LM, Sweetman CJ et al (2010b) A ‘‘Rosetta Stone’’ for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (Northwest Atlantic Ocean). Deep-Sea Res II 57:2234–2247

    Google Scholar 

  • Bucklin A, Steinke D, Blanco-Bercial L (2011) DNA barcoding of marine metazoa. Annu Rev Mar Sci 3:471–508. http://dx.doi.org/10.1146/annurev-marine-120308-080950

    Google Scholar 

  • Cárdenas P, Menegola C, Rapp HT, Diaz MC (2009) Morphological description and DNA barcodes of shallow-water Tetractinellida (Porifera: Demospongiae) from Bocas del Toro, Panama, with description of a new species. Zootaxa 2276:1–39

    Google Scholar 

  • Carvalho FC, Pomponi SA, Xavier JR (2015) Lithistid sponges of the upper bathyal of Madeira, Selvagens and Canary Islands, with description of a new species of Isabella. J Mar Biol Assoc UK 95:1287–1296. doi:10.1017/S0025315414001179

    Article  Google Scholar 

  • Castellani C, Lindley AJ, Wootton M, Lee CM, Kirby RR (2012) Morphological and genetic variation in the North Atlantic copepod Centropages typicus. J Mar Biol Assoc UK 92:99–106

    CAS  Google Scholar 

  • Chinnappareddy LRD, Khandagale K, Reddy SHS, Chennareddy CKA, Singh TH (2012) SSR-based DNA barcodes as a tool for identification of eggplant genotypes. Int J Vegetable Sci 18(3):260–271. doi:10.1080/19315260.2011.633976

    Article  Google Scholar 

  • Clarkston BE, Saunders GW (2010) A comparison of two DNA barcode markers for species discrimination in the red algal family Kallymeniaceae (Gigartinales, Florideophyceae), with a description of Euthoratim burtonii sp. Botany 88:119–131. http://dx.doi.org/10.1139/B09-101

    Google Scholar 

  • Costa FO, Henzler CM, Lunt DH, Whiteley NM, Rock J (2009) Probing marine Gammarus (Amphipoda) taxonomy with DNA barcodes. Syst Biodivers 7(4):365–379. http://dx.doi.org/10.1017/S1477200009990120

    Google Scholar 

  • Daru BH, Yessoufou K, Mankga LT, Davies TJ (2013) A global trend towards the loss of evolutionarily unique species in mangrove ecosystems. PLoS ONE 8(6):e66686. http://dx.doi.org/10.1371/journal.pone.0066686

    Google Scholar 

  • De Wit P, Rota E, Erséus C (2009) Grania (Annelida: Clitellata: Enchytraeidae) of the Great Barrier Reef, Australia, including four new species and a re-description of Graniatrichaeta Jamieson, 1977. Zootaxa 2165:16–38

    Google Scholar 

  • Derycke S, Fonseca G, Vierstraete A, Vanfleteren J, Vincx M, Moens T (2008) Disentangling taxonomy within the Rhabditis (Pellioditis) marina (Nematoda, Rhabditidae) species complex using molecular and morphological tools. Zool J Linn Soc 152:1–15

    Article  Google Scholar 

  • Dettai A, Lautredou AC, Bonillo C (2011) Theactinopterygian diversity of the CEAMARC cruises: barcoding and molecular taxonomy as a multi-level tool for new findings. Deep-Sea Res II 58(1):250–263

    Article  CAS  Google Scholar 

  • Dhaneesh KV, Kumar TTA, Kumar AB (2015) Barcoding, phylogeography and species boundaries in crownfishes of the Indian Ocean. DNA Barcodes 3:5–16

    Google Scholar 

  • Efe MA, Tavares ES, Baker AJ, Bonatto SL (2009) Multigene phylogeny and DNA barcoding indicate that the Sandwich tern complex (Thalasseussandvicensis, Laridae, Sternini) comprises two species. Mol Phylogenet Evol 52:263–267

    Article  CAS  PubMed  Google Scholar 

  • Erpenbeck D, Hall K, Alvarez B, Büttner G, Sacher K, Schätzle S, Schuster A, Vargas S, Hooper JNA, Wörheide G (2012) The phylogeny of halichondrid demosponges: past and present re-visited with DNA-barcoding data. Org Divers Evol 12:57–70. doi:10.1007/s13127-011-0068-9

    Article  Google Scholar 

  • Erpenbeck D, Ekins M, Enghuber N, Hooper JNA, Lehnert H, Poliseno A, Schuster A, Setiawan E, De Voogd NJ, Wörheide G, Soest RWM (2015) Nothing in (sponge) biology makes sense—except when based on holotypes. J Mar Biol Assoc UK. doi:10.1017/S0025315415000521

    Google Scholar 

  • Ghosh R, Trivedi S, Pramanick P, Zaman S, Mitra A (2015) Seagrass: a store house of carbon. J Energy Environ Carbon Credits 5(2):23–29

    Google Scholar 

  • Gray JS (1997) Marine biodiversity: patterns, threats and conservation needs. Biodiv Conserv 6:153–175

    Article  Google Scholar 

  • Hanner R, Becker S, Ivanova VN (2011) FISH-BOL and seafood identification: geographically dispersed case studies reveal systemic market substitution across Canada. Mitochondrial DNA 22(S1):106–122. http://dx.doi.org/10.3109/19401736.2011.588217

    Google Scholar 

  • Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proc Biol Sci R Soc 270(1512), 313–321. http://dx.doi.org/10.1098/rspb.2002.2218

    Google Scholar 

  • Hirose M, Hirose E (2009) Barcoding in photosymbiotic species of Diplosoma (Ascidiacea: Didemnidae), with the description of a new species from the Southern Ryukyus Japan. Zool Sci 26(8):564–568. http://dx.doi.org/10.2108/zsj.26.564

  • Holland LZ, Gibson-Brown JJ (2003) The Ciona intestinalis genome: when the constraints are off. BioEssays 25(6):529–532

    Google Scholar 

  • Holmes BH, Steinke D, Ward RD (2009) Identification of shark and ray fins using DNA barcoding. Fisher Res 95:280–288

    Article  Google Scholar 

  • Järnegren J, Schander C, Sneli J-A, Rønningen V, Young CM (2007) Four genes, morphology and ecology: distinguishing a newspecies of Acesta (Mollusca; Bivalvia) from the Gulf of Mexico. Mar Biol 152:43–55. http://dx.doi.org/10.1007/s00227-007-0651-y

    Google Scholar 

  • Jennings RM, Bucklin A, Ossenbrugger H, Hopcroft RR (2010a) Species diversity of planktonic gastropods (Pteropoda and Heteropoda) fromsix ocean regions based on DNA barcode analysis. Deep-Sea Res II 57:2199–2210. http://dx.doi.org/10.1016/j.dsr2.2010.09.022

    Google Scholar 

  • Jennings RM, Bucklin A, Pierrot-Bults A (2010b) Barcoding of arrow worms (Phylum Chaetognatha) from three oceans: genetic diversity and evolution within an enigmatic phylum. PLoS ONE 5(4):e9949. http://dx.doi.org/10.1371/journal.pone.0009949

    Google Scholar 

  • Joly S, Davies TJ, Archambault A, Bruaeau A, Derry A, Kembel SW, Peres–Neto P, Vamosi J, Wheeler TA (2013) Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead. Mol Ecol Resour. doi:10.1111/1755-0998.12173

    PubMed  Google Scholar 

  • Kamaruzzaman BY, John BA, Zaleha K, Jalal KCA (2011) Molecular phylogeny of horseshoe crab. Asian J Biotechnol 3:302–309

    Article  Google Scholar 

  • Kappner I, Bieler R (2006) Phylogeny of venus clams (Bivalvia: Venerinae) as inferred from nuclear and mitochondrial gene sequences. Mol Phylogenet Evol 40(2):317–331

    Article  CAS  PubMed  Google Scholar 

  • Kemppainen P, Panova M, Hollander J, Johannesson K (2009) Complete lack of mitochondrial divergence between two species of NE Atlantic marine intertidal gastropods. J Evol Biol 22(10):2000–2011. http://dx.doi.org/10.1111/j.1420-9101.2009.01810.x

    Google Scholar 

  • Keshavmurthy S, Yang S-Y, Alamaru A, Chuang Y-Y, Pichon M, Obura D et al (2013) DNA barcoding reveals the coral ‘‘laboratory-rat’’, Stylophora pistillata encompasses multiple identities. Sci Rep 3:1520. doi:10.1038/srep01520

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim MS, Yang MY, Cho GY (2010) Applying DNA barcoding to Korean Gracilariaceae (Rhodophyta) Cryptogamie. Algologie 3(4):387–401

    Google Scholar 

  • Kochzius M, Seidel C, Antoniou A (2010) Identifying fishes through DNA barcodes and microarrays. PLoS ONE 5(9):e12620. http://dx.doi.org/10.1371/journal.pone.0012620

    Google Scholar 

  • Kozol R, Blanco-Bercial L, Bucklin A (2012) Multi-Gene analysis reveals a lack of genetic divergence between Calanusagulhensis and C. sinicus (Copepoda; Calanoida). PLoS ONE 7:e45710

    Google Scholar 

  • Krug PJ, Ellingson RA, Burton R, Valdés A (2007) A new poecilogonous species of sea slug (Opisthobranchia: Sacoglossa) from California: comparison with the planktotrophiccongenermodesta (Lovén 1844). J Mollus Stud 73(1):29–38. doi:10.1093/mollus/eyl025

    Article  Google Scholar 

  • Laakmann S, Auel H, Kochzius M (2012) Evolution in the deep sea: biological traits, ecology and phylogenetics of pelagic copepods. Mol Phylogenet Evol 65:535–546

    Article  PubMed  Google Scholar 

  • Lakra WS, Verma WS, Goswami M (2010) DNA barcoding Indian marine fishes. Mol Ecol Resour 11:60–71

    Article  Google Scholar 

  • Lavrov DV, Pett W, Voigt O, Wörheide G, Forget L, Franz Lang B, Kayaly E, (2012) Mitochondrial DNA of Clathrina clathrus (Calcarea, Calcinea): six linear chromosomes, fragmented rRNAs, tRNA Editing, and a novel genetic code. Mol Biol Evol 30(4):865–880. doi:10.1093/molbev/mss274

    Google Scholar 

  • Layton KKS, Martel AL, Hebert PDN (2014) Patterns of DNA barcode variation in canadian marine molluscs. PLoS ONE 9(4):e95003. http://dx.doi.org/10.1371/journal.pone.0095003

    Google Scholar 

  • Lee G, Park SY, Hwang J, Lee Y-H, Hwang SY, Lee S, Lee T-K (2011) Development of DNA chip for jellyfish verification from South Korea. BioChip J 5(4):375–382. doi:10.1007/s13206-011-5412-9

    Article  CAS  Google Scholar 

  • Leray M, Knowlton N (2015) DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. PNAS 112(7):2076–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Les DH, Moody ML, Jacobs SWL, Bayer RJ (2002) Systematics of seagrasses (Zosteraceae) in Australia and New Zealand. Syst Bot 27:468–484

    Google Scholar 

  • Li WY, Zhong J, Wang Y-Q (2010) Analysis of amphioxus geographic populations in the West Pacific Ocean based on COX Ι gene. Zool Res 31(4):375–380. doi:10.3724/SP.J.1141.2010.04375

    CAS  PubMed  Google Scholar 

  • Lobo J, Teixeira MAL, Borges LMS, Ferreira MSG, Hollatz C, Gomes PT, Sousa R et al (2015) Starting a DNA barcode reference library for shallow water polychaetes from the southern European Atlantic coast. Mol Ecol Resour. doi:10.1111/1755-0998.12441

    PubMed  Google Scholar 

  • Lowenstein JH, Amato G, Kolokotronis S-O (2009) The real maccoyii: identifying Tuna Sushi with DNA barcodes—contrasting characteristic attributes and genetic distances. PLoS ONE 4(11):e7866. http://dx.doi.org/10.1371/journal.pone.0007866

    Google Scholar 

  • Lucas C, Thangaradjou T, Papenbrock J (2012) Development of a DNA barcoding systemforseagrasses: successful but not simple. PLoS ONE 7(1):e29987. doi:10.1371/journal.pone.0029987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maas AE, Blanco-Bercial L, Lawson GL (2013) Reexamination of the species assignment of Diacavolinia pteropods using DNA barcoding. PLoS ONE 8(1):e53889. http://dx.doi.org/10.1371/journal.pone.0053889

    Google Scholar 

  • Mabragaña E, Díaz de Astarloa JM, Hanner R (2011) DNA barcoding identifies argentine fishes from marine and brackish waters. PLoS ONE 6(12):e28655. http://dx.doi.org/10.1371/journal.pone.0028655

    Google Scholar 

  • Machida RJ, Tsuda A (2010) Dissimilarity of species and forms of planktonic Neocalanus copepods using mitochondrial COI, 12S, nuclear ITS, and 28S gene sequences. PLoS ONE 5(4):e10278. http://dx.doi.org/10.1371/journal.pone.0010278

    Google Scholar 

  • Maturana CS, Rodrigo A, Moreno RA, Labra FA, González-Wevar CA, Rozbaczylo N, Carrasco FD, Poulin E (2011) DNA barcoding of marine polychaetes species of southern Patagonian fjords. Revista de Biología Marina y Oceanografía 46(1):35–42

    Google Scholar 

  • Mecklenburg CW, Moller PR, Steinke D (2011) Biodiversity of arctic marine fishes: taxonomy and zoogeography. Mar Biodiv 41:109–140

    Article  Google Scholar 

  • Mikkelsen NT, Schander C, Willassen E (2007) Local scale DNA barcoding of bivalves (Mollusca): a case study. Zool Scr 36(5):455–463. http://dx.doi.org/10.1111/j.1463-6409.2007.00289

    Google Scholar 

  • Mitra A, Trivedi S, Zaman S, Pramanick P, Chakraborty S, Pal N, Fazli P, Banerjee K (2015) Decadal variation of nutrient level in two major estuaries in the Indian subdarbans. Jordan J Biol Sci 8(3):231–236

    Google Scholar 

  • Molnar JL, Gamboa RL, Revenga C (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485–492

    Article  Google Scholar 

  • Morrow CC, Picton BE, Erpenbeck D, Boury-Esnault N, Maggs CA, Allcock AL (2012) Congruence between nuclear and mitochondrial genes in Demospongiae: a new hypothesis for relationships within the G4 clade (Porifera: Demospongiae). Mol Phylogenet Evol 62:174–190

    Article  CAS  PubMed  Google Scholar 

  • Moura CJ, Harris DJ, Cunha MR, Rogers AD (2007) DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep-sea environments. Zool Scr 37(1):93–108. http://dx.doi.org/10.1111/j.1463-6409.2007.00312

  • Nagy ZT, Sonet G, GlawF (2012) First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. PLoS ONE 7(3):e34506. http://dx.doi.org/10.1371/journal.pone.0034506

    Google Scholar 

  • Naro-Maciel E, Reid B, Fitzsimmons NN (2009) DNA barcodes for globally threatened marine turtles: a registry approach to documenting biodiversity. Mol Ecol Resour 10:252–263. http://dx.doi.org/10.1111/j.1755-0998.2009.02747.x

    Google Scholar 

  • Park M-H, Sim C-J, Baek J, Min G-S (2007) Identification of genes suitable for DNA barcoding of morphologically indistinguishable Korean Halichondriidae sponges. Mol Cells 23(2):220–227

    CAS  PubMed  Google Scholar 

  • Pauls SU, Blahnik RJ, Zhou X, Wardwell CT, Holzenthal RW (2010) DNA barcode data confirm new species and reveal cryptic diversityin Chilean Smicridea (Smicridea) (Trichoptera:Hydropsychidae). J N Am Benthol Soc 29(3):1058–1074. doi:10.1899/09-108.1

    Google Scholar 

  • Pires AC, Marinoni L (2010) DNA barcoding and traditional taxonomy unified through Integrative Taxonomy: a view that challenges the debate questioning both methodologies. Biota Neotrop 10(2)

    Google Scholar 

  • Plaisance L, Caley MJ, Brainard RE, Knowlton N (2011) The diversity of coral reefs: what are we missing? PLoS ONE 6(10):e25026. doi:10.1371/journal.pone.0025026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pöppe J, Sutcliffe P, Hooper JNA, Wörheide G, Erpenbeck D (2010) COI barcoding reveals new clades and radiation patterns of Indo-Pacific sponges of the family Irciniidae (Demospongiae: Dictyoceratida). PLoS ONE 5(4):e9950. doi:10.1371/journal.pone.0009950

    Google Scholar 

  • Puillandre N, Strong EE, Bouchet P (2009) Identifying gastropod spawn from DNA barcodes: possible but not yet practicable. Mol Ecol Resour 9:1311–1321. http://dx.doi.org/10.1111/j.1755-0998.2009.02576.x

    Google Scholar 

  • Raupach MJ, Barco A, Steinke D, Beermann J, Laakmann S, Mohrbeck I et al (2015) The application of DNA barcodes for the identification of marine crustaceans from the North Sea and adjacent regions. PLoS ONE 10(9):e0139421. doi:10.1371/journal.pone.0139421

    Article  PubMed  PubMed Central  Google Scholar 

  • Razy-Krajka F, Lam K, Wang W, Stolfi A, Joly M, Bonneau R, Christiaen L (2014) Collier/OLF/EBF-dependent transcriptional dynamics control pharyngeal muscle specification from primed cardiopharyngeal progenitors. Dev Cell 29(3):263–276. http://dx.doi.org/10.1016/j.devcel.2014.04.001

    Google Scholar 

  • Satoh N, Satou Y, Davidson B, Levine M (2003) Ciona intestinalis: an emerging model for whole-genome analyses. Trends Genet 19(7):376–381

    Article  CAS  PubMed  Google Scholar 

  • Schuster A, Erpenbeck D, Pisera A, Hooper J, Bryce M et al (2015) Deceptive desmas: molecular phylogenetics suggests a new classification and uncovers convergent evolution of lithistiddemosponges. PLoS ONE 10(1):e116038. doi:10.1371/journal.pone.011603

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith KF, Thia J, Gemmill CEC (2012) Barcoding of the cytochrome oxidase I (COI) indicates a recent introduction of Ciona savignyi into New Zealand and provides a rapid method for Ciona species discrimination. Aquat Invasions 7(3): 305–313. http://dx.doi.org/10.3391/ai.2012.7.3.002

    Google Scholar 

  • Sperling EA, Rosengarten RD, Moreno MA, Dellaporta SL (2012). The complete mitochondrial genome of the verongid sponge Aplysina cauliformis: implications for DNA barcoding in demosponges. Hydrobiologia 687:61–69 doi:10.1007/s10750-011-0879-x

    Google Scholar 

  • Steinke D, Zemlak TS, Hebert PDN (2009) Barcoding Nemo: DNA-based identifications for the ornamental fish trade. PLoS ONE 4(7):e6300. http://dx.doi.org/10.1371/journal.pone.0006300

    Google Scholar 

  • Stolfi A, Christiaen L (2012) Genetic and genomic toolbox of the chordate Ciona intestinalis. Genetics 192(1):55–66. http://dx.doi.org/10.1534/genetics.112.140590

    Google Scholar 

  • Szitenberg A, Becking LE, Vargas S, Fernandez JCC, Santodomingo N, Wörheide G, Ilan M, Kelly M, Huchon D (2013) Phylogeny of Tetillidae (Porifera, Demospongiae, Spirophorida) based on three molecular markers. Mol Phylogenet Evol 67:509–519

    Article  PubMed  Google Scholar 

  • Tack JF, Berghe E, Polk PH (1992) Ecomorphology of Crassostrea cucullata (Born, 1778) (Ostreidae) in a mangrove creek (Gazi, Kenya). Hydrobiologia 247:109–117

    Article  Google Scholar 

  • Tolkin T, Christiaen L (2012) Development and evolution of the ascidian cardiogenic mesoderm. Curr Top Dev Biol 100:107–142. http://dx.doi.org/10.1016/B978-0-12-387786-4.00011-7

  • Trivedi S, Affan R, Alessa AHA et al (2014) DNA barcoding of Red Sea fishes from Saudi Arabia—the first approach. DNA Barcodes 2:17–20. http://dx.doi.org/10.2478/dna-2014-0003

  • Trivedi S, Aloufi AA, Ansari AA, Ghosh SK (2015a) Molecular phylogeny of oysters belonging to the genus Crassostrea through DNA barcoding. J Entomol Zool Stud 3(1):21–26

    Google Scholar 

  • Trivedi S, Chakraborty S, Zaman S, Prosenjit P, Fazli P, Amin G, Mitra (2015b) Impact of salinity on the condition factor of commercially important Fin Fish in the lower Gangetic delta. J Environ Sci Comput Sci Eng Technol 4(2):473–480

    Google Scholar 

  • Trivedi S, Aloufi AA, Rehman H, Saggu S, Ghosh SK (2016a) DNA barcoding: tool for assessing species identification in reptilia. J Entomol Zool Stud 4(1):332–337

    Google Scholar 

  • Trivedi S, Aloufi AA, Ansari AA, Ghosh SK (2016b) Role of DNA barcoding in marine biodiversity assessment and conservation: an update. Saudi J Biol Sci. http://dx.doi.org/10.1016/j.sjbs.2015.01.00

  • Trivedi S, Ansari AA, Rehman H, Saggu S, Abbas ZK, Ghosh SK (2016c) DNA barcoding as a molecular tool for the assessment of plant biodiversity. In: Ansari AA, Gill SS (eds) Plant biodiversity: monitoring assessment and conservation. CABI Publications, Wallingford (In press)

    Google Scholar 

  • Trivedi S, Ueki T, Yamaguchi N, Michibata H (2003) Novel Vanadium-binding proteins (vanabins) identified in cDNA libraries and the genome of the ascidian Ciona intestinalis. Biochim Biophys Acta 1630:64–70

    Article  CAS  PubMed  Google Scholar 

  • Uchimura M, Faye EJ, Shimada S, Inoue T, Nakamura Y (2008) A reassessment of Halophila species (Hydrocharitaceae) diversity with special reference to Japanese representatives. Bot Mar 51:258–268

    Article  Google Scholar 

  • Uthicke S, Byrne M, Conand C (2010) Genetic barcoding of commercial Bêche-de-mer species (Echinodermata: Holothuroidea). Mol Ecol Resour 10(4)–646. http://dx.doi.org/10.1111/j.1755-0998.2009.02826.x

    Google Scholar 

  • Vanhove MPM, Tessens B, Schoelinck C, Jondelius U, Littlewood DTJ, Artois T, Huyse T (2013) Problematic barcoding in flatworms: A case-study on monogeneans and rhabdocoels (Platyhelminthes). In: Nagy ZT, Backeljau T, De Meyer M, Jordaens K (eds) DNA barcoding: a practical tool for fundamental and applied biodiversity research. ZooKeys 365:355–379. doi:10.3897/zookeys.365.5776

    Google Scholar 

  • Vargas S, Erpenbeck D, Göcke C, Hall KA, Hooper JNA, Janussen D, Wörheide G (2013). Molecular phylogeny of Abyssocladia (Cladorhizidae: Poecilosclerida) and Phelloderma (Phellodermidae: Poecilosclerida) suggests a diversification of chelae microscleres in cladorhizid sponges. ZoologicaScripta 42:106–116

    Google Scholar 

  • Vargas S, Kelly M, Schnabel K, Mills S, Bowden D, Wörheide G (2015) Diversity in a cold hot-spot: DNA-barcoding reveals patterns of evolution among Antarctic demosponges (Class Demospongiae, Phylum Porifera). PLoS ONE 10(6):e0127573. doi:10.1371/journal.pone.0127573

    Article  PubMed  PubMed Central  Google Scholar 

  • Vargas S, Schuster A, Sacher K, Büttner G, Schätzle S et al (2012) Barcoding sponges: an overview based on comprehensive sampling. PLoS ONE 7(7):e39345. doi:10.1371/journal.pone.003934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas SM, Araújo FCF, Santos FR (2009) DNA barcoding of Brazilian sea turtles (Testudines). Genet Mol Biol 32(3):608–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velmurugan S, Prasannakumar C, Manokaran S, Ajithkumar T, Samkamaleson A, Palavesam A (2013) DNA barcodes for marine fungal identification and discovery. Fungal Ecol 6:408–418. http://dx.doi.org/10.1016/j.funeco.2013.05.003

    Google Scholar 

  • Vences M, Thomas M, Meijden A, Chiari Y, Vieites DR (2005) Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front Zool 2:5. doi:10.1186/1742-9994-2-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward RD, Hanner R, Hebert PDN (2009) The campaign to DNA barcode all fishes. J Fish Biol 74:329–356

    Article  CAS  PubMed  Google Scholar 

  • Ward RD, Holmes BH, O’hara TD (2008) DNA barcoding discriminates echinoderm species. Mol Ecol Resour 8(6):1202–1211

    Article  CAS  PubMed  Google Scholar 

  • Ward RD, Zemlak TS, Innes BH (2005) Barcoding Australia’s fish species. Phil Trans R Soc Lond B 360:1847–1857

    Article  CAS  Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJB et al (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106:12377–12381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waycott M, Freshwater DW, York RA et al (2002) Evolutionary trends in the seagrass genus Halophila (thouars): Insights from molecular phylogeny. Bull Mar Sci 71:1299–1308

    Google Scholar 

  • Weigt LA, Baldwin CC, Driskell A (2012) Using DNA barcoding to assess Caribbean Reef fish biodiversity: expanding taxonomic and geographic coverage. PLoS ONE 7(7):e41059. http://dx.doi.org/10.1371/journal.pone.0041059

    Google Scholar 

  • Wörheide G, Erpenbeck D, Menke C (2007) The sponge barcoding project: aiding in the identification and description of poriferan taxa. Porifera Res Biodivers Innov Sustain 2007:123–128

    Google Scholar 

  • Xiaobo Z, Shaojun P, Tifeng S (2013) Applications of three DNA barcodes in assorting intertidal red Macroalgal Flora in Qingdao, China. J Ocean Univ China 12(1):139–145. http://dx.doi.org/10.1007/s11802-013-2052-9

  • Zemlak TS, Ward RD, Connell AD (2009) DNA barcoding reveals overlooked marine fishes. Mol Ecol Resour 9(1):237–242. http://dx.doi.org/10.1111/j.1755-0998.2009.02649.x

    Google Scholar 

  • Zhang H, Zhang Y, Zhang Z, Gao T (2013) DNA barcodes of eight species in genus Sebastes. Biochem Syst Ecol 48:45–50. http://dx.doi.org/10.1016/j.bse.2012.11.012

    Google Scholar 

  • Zhang J (2011) Species identification of marine fishes in China with DNA barcoding. Evid Based Complement Altern Med. Article ID 978253, 10p. http://dx.doi.org/10.1155/2011/978253

  • Zhang J-B, Hanner R (2011) DNA barcoding is a useful tool for the identification of marine fishes from Japan. Biochem Syst Ecol 39:31–42

    Article  Google Scholar 

  • Zhou H, Zhang Z, Chen H, Sun R, Wang H, Guo L, Pan H (2010) Integrating a DNA barcoding project with an ecological survey: a case study on temperate intertidal polychaete communities in Qingdao, China. Chin J Oceanol Limnol 28(4):899–910. doi:10.1007/s00343-010-9131-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Deanship of Scientific Research, University of Tabuk, Saudi Arabia, for the support provided through the projects numbered S-1434-0106, S-1435-0112 and S-1436-0252 to Dr. Subrata Trivedi (Principal Investigator).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Trivedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Trivedi, S. et al. (2016). DNA Barcoding in the Marine Habitat: An Overview. In: Trivedi, S., Ansari, A., Ghosh, S., Rehman, H. (eds) DNA Barcoding in Marine Perspectives. Springer, Cham. https://doi.org/10.1007/978-3-319-41840-7_1

Download citation

Publish with us

Policies and ethics