Plants for Constructed Wetlands as an Ecological Engineering Alternative to Road Runoff Desalination



De-icing salt and snow pollution in urban and road areas is a growing threat seriously menacing the ecosystem goods and services provided by soils, rivers, wetlands, and lakes in the world. Up to 90 % of de-icing salt used for winter road maintenance (salt spreading and storage sites) can be transported, together with co-pollutants, e.g. metals, from tens to hundreds of metres from roads reaching soils, and both surface and ground water. Within ecological engineering, there are several strategies to reduce the impact of road de-icing salts once they are in the environment. Among them, constructed wetlands (CWs) have proved to be techno-economically feasible, energy efficient, and a green strategy. This chapter provides extensive information on the use of macrophytes in CWs for de-icing salt removal and presents: (a) an overview of phytoremediation in CWs and a summary of the full-scale facilities specifically conducted to road runoff treatment; (b) a compendium of studies focused on salt removal with macrophytes in greenhouses and those aimed at assessing macrophyte response to salinity in combination with other stressors (waterlogging, water depth, storm events, temperature, competitive interactions, nutrients, pollutants, and so on); and (c) a case study on treatment of runoff from an urban snow disposal site with Scirpus maritimus and Spartina pectinata.


De-icing salts Road runoff water Snow disposal site Phytoremediation Macrophytes Constructed wetland Ecological engineering 



Abscisic acid


One-way analysis of variance


Biochemical oxygen demand




Chemical oxygen demand


Constructed wetland


Dissolved oxygen


Electrical conductivity


Filter bed


Flame emission atomic spectroscopy


High performance liquid chromatography


Negative removal efficiency


O-acetylserine (thiol) lyase activity


Organic matter


Polycyclic aromatic hydrocarbons


Polychlorinated biphenyls


Parts per thousand (‰)


Specific leaf area


Soluble reactive phosphorus


Suspended solids


Tolerance index



This research work and field experiments were supported by several funding agencies and organisms: Natural Sciences and Engineering Research Council of Canada (NSERC), Fonds de recherche du Québec—Nature et technologies (FRQNT), Ministry of Transport of Québec (MTQ), City of Québec, City of Saint-Augustin de Desmaures, and City of Gatineau. The authors would like to thank Dr. Ansari for the invitation to write this chapter. We especially wish to thank Tania Patricia Santiago Badillo for her assistance with the literature search and Simon Plourde for his laboratory assistance.


  1. 1.
    Sétra (2011) L’impact des fondants routiers sur l’environnement. Etat des connaissances et pistes d’actions. Note d’information. Série Economie Environnement Conception no 94Google Scholar
  2. 2.
    Environment and Health Canada (2001) Canadian Environmental Protection Act, 1999. Priority Substances List Assessment Report. Road Salts. 171Google Scholar
  3. 3.
    Poliakova OV, Lebedev AT, Hänninen O (2000) Organic pollutants in snow of urban and rural Russia and Finland. Toxicol Environ Chem 75:181–194. doi: 10.1080/02772240009358903 CrossRefGoogle Scholar
  4. 4.
    Engelhard C, De Toffol S, Lek I et al (2007) Environmental impacts of urban snow management—the alpine case study of Innsbruck. Sci Total Environ 382:286–294. doi: 10.1016/j.scitotenv.2007.04.008 CrossRefPubMedGoogle Scholar
  5. 5.
    Exall K, Rochfort Q, Marsalek J (2011) Measurement of cyanide in urban snowmelt and runoff. Water Qual Res J Canada 46:137–147. doi: 10.2166/wqrjc.2011.022 CrossRefGoogle Scholar
  6. 6.
    Landsberger S, Jervis RE, Aufreiter S, Van Loon JC (1982) The determination of heavy metals (Al, Mn, Fe, Ni, Cu, Zn, Cd and Pb) in urban snow using an atomic absorption graphite furnace. Chemosphere 11:237–247. doi: 10.1016/0045-6535(82)90147-3 CrossRefGoogle Scholar
  7. 7.
    Loranger S, Tétrault M, Kennedy G, Zayed J (1996) Manganese and other trace elements in urban snow near an expressway. Environ Pollut 92:203–211. doi: 10.1016/0269-7491(95)00082-8 CrossRefPubMedGoogle Scholar
  8. 8.
    Sansalone J, Buchberger S (1996) Characterization of metals and solids in urban highway winter snow and spring rainfall-runoff. Transp Res Rec J Transp Res Board 1523:147–159. doi: 10.3141/1523-18 CrossRefGoogle Scholar
  9. 9.
    Kuoppamäki K, Setälä H, Rantalainen A-L, Kotze DJ (2014) Urban snow indicates pollution originating from road traffic. Environ Pollut 195:56–63. doi: 10.1016/j.envpol.2014.08.019 CrossRefPubMedGoogle Scholar
  10. 10.
    Bäckström M, Karlsson S, Bäckman L et al (2004) Mobilisation of heavy metals by deicing salts in a roadside environment. Water Res 38:720–732. doi: 10.1016/j.watres.2003.11.006 CrossRefPubMedGoogle Scholar
  11. 11.
    Nelson SS, Yonge DR, Barber ME (2009) Effects of road salts on heavy metal mobility in two eastern Washington soils. J Environ Eng 135:505–510. doi: 10.1061/(ASCE)0733-9372(2009)135:7(505) CrossRefGoogle Scholar
  12. 12.
    Blomqvist G, Johansson E-L (1999) Airborne spreading and deposition of de-icing salt—a case study. Sci Total Environ 235:161–168. doi: 10.1016/S0048-9697(99)00209-0 CrossRefGoogle Scholar
  13. 13.
    Nikiforova EM, Kasimov NS, Kosheleva NE (2014) Long-term dynamics of the anthropogenic salinization of soils in Moscow (by the example of the Eastern district). Eurasian Soil Sci 47:203–215. doi: 10.1134/S1064229314030041 CrossRefGoogle Scholar
  14. 14.
    Meegoda JN, Marhaba TF, Ratnaweera P (2004) Strategies to mitigate salt runoff from salt storage and salt truck maintenance facilities. Pract Period Hazardous, Toxic, Radioact Waste Manag 8:247–252. doi: 10.1061/(ASCE)1090-025X(2004)8:4(247) CrossRefGoogle Scholar
  15. 15.
    Ostendorf DW, Hinlein ES, Rotaru C, DeGroot DJ (2006) Contamination of groundwater by outdoor highway deicing agent storage. J Hydrol 326:109–121. doi: 10.1016/j.jhydrol.2005.10.028 CrossRefGoogle Scholar
  16. 16.
    Environment Canada (2004) Code of Practice for the Environmental Management of Road Salts. Report SPE 1/CC/5Google Scholar
  17. 17.
    Viklander M (1996) Urban snow deposits-pathways of pollutants. Sci Total Environ 189(190):379–384. doi: 10.1016/0048-9697(96)05234-5 CrossRefGoogle Scholar
  18. 18.
    Exall K, Marsalek J, Rochfort Q, Kydd S (2011) Chloride transport and related processes at a municipal snow storage and disposal site. Water Qual Res J Canada 46:148–156. doi: 10.2166/wqrjc.2011.023 CrossRefGoogle Scholar
  19. 19.
    Oliver BG, Milne JB, Labarre N (1974) Chloride lead in urban snow. Water Pollut Control Fed 46:766–771Google Scholar
  20. 20.
    Bryson GM, Barker AV (2002) Sodium accumulation in soils and plants along Massachusetts roadsides. Commun Soil Sci Plant Anal 33:67–78. doi: 10.1081/CSS-120002378 CrossRefGoogle Scholar
  21. 21.
    Czerniawska-Kusza I, Kusza G, Duzyński M (2004) Effect of deicing salts on urban soils and health status of roadside trees in the Opole Region. Environ Toxicol 19:296–301. doi: 10.1002/tox.20037 CrossRefPubMedGoogle Scholar
  22. 22.
    Lundmark A, Olofsson B (2007) Chloride deposition and distribution in soils along a deiced highway—assessment using different methods of measurement. Water Air Soil Pollut 182:173–185. doi: 10.1007/s11270-006-9330-8 CrossRefGoogle Scholar
  23. 23.
    Li F, Zhang Y, Fan Z, Oh K (2015) Accumulation of de-icing salts and its short-term effect on metal mobility in urban roadside soils. Bull Environ Contam Toxicol 94:525–531. doi: 10.1007/s00128-015-1481-0 CrossRefPubMedGoogle Scholar
  24. 24.
    Amrhein C, Mosher PA, Strong JE, Pacheco PG (1994) Trace metal solubility in soils and waters receiving deicing salts. J Environ Qual 23:219–227CrossRefGoogle Scholar
  25. 25.
    Löfgren S (2001) The chemical effects of deicing salt on soil and stream water of five catchments in southeast Sweden. Water Air Soil Pollut 130:863–868. doi: 10.1023/A:1013895215558 CrossRefGoogle Scholar
  26. 26.
    Norrström A-C, Bergstedt E (2001) The impact of road de-icing salts (NaCl) on colloid dispersion and base cation pools in roadside soils. Water Air Soil Pollut 127:281–299. doi: 10.1023/A:1005221314856 CrossRefGoogle Scholar
  27. 27.
    Green SM, Machin R, Cresser MS (2008) Effect of long-term changes in soil chemistry induced by road salt applications on N-transformations in roadside soils. Environ Pollut 152:20–31. doi: 10.1016/j.envpol.2007.06.005 CrossRefPubMedGoogle Scholar
  28. 28.
    Cekstere G, Nikodemus O, Osvalde A (2008) Toxic impact of the de-icing material to street greenery in Riga, Latvia. Urban Forestry Urban Green 7:207–217. doi: 10.1016/j.ufug.2008.02.004 CrossRefGoogle Scholar
  29. 29.
    Godwin KS, Hafner SD, Buff MF (2003) Long-term trends in sodium and chloride in the Mohawk River, New York: the effect of fifty years of road-salt application. Environ Pollut 124:273–281. doi: 10.1016/S0269-7491(02)00481-5 CrossRefPubMedGoogle Scholar
  30. 30.
    Ramakrishna DM, Viraraghavan T (2005) Environmental impact of chemical deicers—a review. Water Air Soil Pollut 166:49–63. doi: 10.1007/s11270-005-8265-9 CrossRefGoogle Scholar
  31. 31.
    Hoffman RW, Goldman CR, Paulson S, Winters GR (1981) Aquatic impacts of deicing salts in the central Sierra Nevada Mountains, California. J Am Water Resour Assoc 17:280–285. doi: 10.1111/j.1752-1688.1981.tb03935.x CrossRefGoogle Scholar
  32. 32.
    Kaushal SS, Groffman PM, Likens GE et al (2005) Increased salinization of fresh water in the northeastern United States. Proc Natl Acad Sci U S A 102:13517–13520. doi: 10.1073/pnas.0506414102 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Novotny EV, Murphy D, Stefan HG (2008) Increase of urban lake salinity by road deicing salt. Sci Total Environ 406:131–144. doi: 10.1016/j.scitotenv.2008.07.037 CrossRefPubMedGoogle Scholar
  34. 34.
    Galvez-Cloutier R, Saminathan SKM, Boillot C et al (2012) An evaluation of several in-lake restoration techniques to improve the water quality problem (eutrophication) of Saint-Augustin Lake, Quebec, Canada. Environ Manage 49:1037–1053. doi: 10.1007/s00267-012-9840-7 CrossRefPubMedGoogle Scholar
  35. 35.
    Novotny EV, Stefan HG (2012) Road salt impact on lake stratification and water quality. J Hydraul Eng 138:1069–1080. doi: 10.1061/(ASCE)HY.1943-7900.0000590 CrossRefGoogle Scholar
  36. 36.
    Perera N, Gharabaghi B, Howard K (2013) Groundwater chloride response in the Highland Creek watershed due to road salt application: a re-assessment after 20 years. J Hydrol 479:159–168. doi: 10.1016/j.jhydrol.2012.11.057 CrossRefGoogle Scholar
  37. 37.
    Howard KWF, Janet H (1993) Groundwater contamination due to road deicing chemicals-Salt balance implications. Geosci Canada 20:1–8Google Scholar
  38. 38.
    Howard KW, Beck PJ (1993) Hydrogeochemical implications of groundwater contamination by road de-icing chemicals. J Contam Hydrol 12:245–268. doi: 10.1016/0169-7722(93)90010-P CrossRefGoogle Scholar
  39. 39.
    Williams DD, Williams NE, Cao Y (2000) Road salt contamination of groundwater in a major metropolitan area and development of a biological index to monitor its impact. Water Res 34:127–138. doi: 10.1016/S0043-1354(99)00129-3 CrossRefGoogle Scholar
  40. 40.
    Daley ML, Potter JD, McDowell WH (2009) Salinization of urbanizing New Hampshire streams and groundwater: effects of road salt and hydrologic variability. J North Am Benthol Soc 28:929–940. doi: 10.1899/09-052.1 CrossRefGoogle Scholar
  41. 41.
    Howard KWF, Maier H (2007) Road de-icing salt as a potential constraint on urban growth in the Greater Toronto Area, Canada. J Contam Hydrol 91:146–170. doi: 10.1016/j.jconhyd.2006.10.005 CrossRefPubMedGoogle Scholar
  42. 42.
    Health Canada (2014) Guidelines for Canadian drinking water quality—summary Table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, OttawaGoogle Scholar
  43. 43.
    Fay L, Shi X, Huang J (2013) Strategies to mitigate the impacts of chloride roadway deicers on the natural environment. National Cooperative Highway Research Program (NCHRP) synthesis 449Google Scholar
  44. 44.
    Mitsch WJ (2012) What is ecological engineering? Ecol Eng 45:5–12. doi: 10.1016/j.ecoleng.2012.04.013 CrossRefGoogle Scholar
  45. 45.
    Day JW, Yañéz Arancibia A, Mitsch WJ et al (2003) Using Ecotechnology to address water quality and wetland habitat loss problems in the Mississippi basin: a hierarchical approach. Biotechnol Adv 22:135–159. doi: 10.1016/j.biotechadv.2003.08.012 CrossRefPubMedGoogle Scholar
  46. 46.
    Tilley DR (2003) Industrial ecology and ecological engineering. J Ind Ecol 7:13–32. doi: 10.1162/108819803322564325 CrossRefGoogle Scholar
  47. 47.
    Millennium Ecosystem Assessment B (2005) Ecosystems and human well-being: current state and trends, vol 1. Island Press, Washington, DCGoogle Scholar
  48. 48.
    Grunewald K, Bastian O (2015) Ecosystem assessment and management as key tools for sustainable landscape development: a case study of the Ore Mountains region in Central Europe. Ecol Modell 295:151–162. doi: 10.1016/j.ecolmodel.2014.08.015 CrossRefGoogle Scholar
  49. 49.
    Semeraro T, Giannuzzi C, Beccarisi L et al (2015) A constructed treatment wetland as an opportunity to enhance biodiversity and ecosystem services. Ecol Eng 82:517–526. doi: 10.1016/j.ecoleng.2015.05.042 CrossRefGoogle Scholar
  50. 50.
    Mitsch WJ, Bernal B, Hernandez ME (2015) Ecosystem services of wetlands. Int J Biodivers Sci Ecosyst Serv Manag Press 1–4. doi: 10.1080/21513732.2015.1006250 Google Scholar
  51. 51.
    EPA (1993) Constructed wetlands for wastewater treatment and wildlife habitat. 17 Case Studies. Environmental Protection Agency (EPA) 832-R-93-005. Municipal Technology Branch Washington, DCGoogle Scholar
  52. 52.
    Vymazal J (2010) Constructed wetlands for wastewater treatment. Water 2:530–549. doi: 10.3390/w2030530 CrossRefGoogle Scholar
  53. 53.
    Herath I, Vithanage M (2015) Phytoremediation in constructed wetlands, Chapter 21. In: Ansari AA, Gill SS, Gill R, et al (eds) Phytoremediation. Manag Environ Contam, vol 2. Springer, New York, pp 243–263Google Scholar
  54. 54.
    Basílico G, de Cabo L, Faggi A (2015) Phytoremediation of water and wastewater: on-site and full-scale applications, Chapter 5. In: Ansari AA, Gill SS, Gill R, et al (eds) Phytoremediation. Manag Environ Contam, vol 2. Springer, New York, pp 51–60Google Scholar
  55. 55.
    Garbisu C, Hernández-Allica J, Barrutia O et al (2002) Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health 17:173–188. doi: 10.1515/REVEH.2002.17.3.173 CrossRefPubMedGoogle Scholar
  56. 56.
    Nivala J, Hoos MB, Cross C et al (2007) Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland. Sci Total Environ 380:19–27. doi: 10.1016/j.scitotenv.2006.12.030 CrossRefPubMedGoogle Scholar
  57. 57.
    Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700. doi: 10.1016/j.envint.2003.11.002 CrossRefPubMedGoogle Scholar
  58. 58.
    Coleman J, Hench K, Garbutt K et al (2001) Treatment of domestic wastewater by three plant species in constructed wetlands. Water 128:283–295. doi: 10.1023/A:1010336703606 Google Scholar
  59. 59.
    Lin YF, Jing SR, Lee DY et al (2005) Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate. Environ Pollut 134:411–421. doi: 10.1016/j.envpol.2004.09.015 CrossRefPubMedGoogle Scholar
  60. 60.
    Lee B, Scholz M, Horn A (2006) Constructed wetlands: treatment of concentrated storm water runoff (part A). Environ Eng Sci 23:320–331. doi: 10.1089/ees.2006.23.320 CrossRefGoogle Scholar
  61. 61.
    Caselles-Osorio A, Garcia J (2007) Effect of physico-chemical pretreatment on the removal efficiency of horizontal subsurface-flow constructed wetlands. Environ Pollut 146:55–63. doi: 10.1016/j.envpol.2006.06.022 CrossRefPubMedGoogle Scholar
  62. 62.
    Sindilariu PD, Schulz C, Reiter R (2007) Treatment of flow-through trout aquaculture effluents in a constructed wetland. Aquaculture 270:92–104. doi: 10.1016/j.aquaculture.2007.03.006 CrossRefGoogle Scholar
  63. 63.
    Lee B-H, Scholz M (2007) What is the role of Phragmites australis in experimental constructed wetland filters treating urban runoff? Ecol Eng 29:87–95. doi: 10.1016/j.ecoleng.2006.08.001 CrossRefGoogle Scholar
  64. 64.
    Lesage E, Rousseau DPL, Meers E et al (2007) Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Sci Total Environ 380:102–115. doi: 10.1016/j.scitotenv.2006.10.055 CrossRefPubMedGoogle Scholar
  65. 65.
    Kantawanichkul S, Kladprasert S, Brix H (2009) Treatment of high-strength wastewater in tropical vertical flow constructed wetlands planted with Typha angustifolia and Cyperus involucratus. Ecol Eng 35:238–247. doi: 10.1016/j.ecoleng.2008.06.002 CrossRefGoogle Scholar
  66. 66.
    Galletti A, Verlicchi P, Ranieri E (2010) Removal and accumulation of Cu, Ni and Zn in horizontal subsurface flow constructed wetlands: contribution of vegetation and filling medium. Sci Total Environ 408:5097–5105. doi: 10.1016/j.scitotenv.2010.07.045 CrossRefPubMedGoogle Scholar
  67. 67.
    Lynch J, Fox LJ, Owen JS Jr, Sample DJ (2015) Evaluation of commercial floating treatment wetland technologies for nutrient remediation of stormwater. Ecol Eng 75:61–69. doi: 10.1016/j.ecoleng.2014.11.001 CrossRefGoogle Scholar
  68. 68.
    Vergeles Y, Vystavna Y, Ishchenko A et al (2015) Assessment of treatment efficiency of constructed wetlands in East Ukraine. Ecol Eng 83:159–168. doi: 10.1016/j.ecoleng.2015.06.020 CrossRefGoogle Scholar
  69. 69.
    Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65. doi: 10.1016/j.scitotenv.2006.09.014 CrossRefPubMedGoogle Scholar
  70. 70.
    Galvez R, Leroueil S, Triffault-Bouchet G, et al (2010) Natural geo-filter bed and halophyte wetland: an eco-engineering system to mitigate saline highway runoff impacts. IASTED Technology ConferenceGoogle Scholar
  71. 71.
    Guesdon G, Galvez-Cloutier R, Triffault-Bouchet G (2013) Evaluation pilote d’un marais épurateur construit adapté et d'un lit filtrant réactif pour le traitement du ruisellement routier: suivi de l'écosystème et résultats de performance. Rapport final. Université LavalGoogle Scholar
  72. 72.
    Galvez-Cloutier R, Triffaut-Bouchet G, Roy S (2014) Eco-engineering process for the treatment of contaminants from salted highway runoff: Adapted wetland and active filter. In: 11th international conference on phytotecnologies. Heraklion, Crete, Greece, p 49Google Scholar
  73. 73.
    Roy S (2015) Traitement du ruissellement routier chargé en sels de déglaçage au moyen de plantes halophytes par marais épuration. MSc Thesis, in process. Laval University, QuebecGoogle Scholar
  74. 74.
    Scholes L, Shutes RB, Revitt D et al (1998) The treatment of metals in urban runoff by constructed wetlands. Sci Total Environ 214:211–219. doi: 10.1016/S0048-9697(98)00072-2 CrossRefGoogle Scholar
  75. 75.
    Pontier H, Williams JB, May E (2001) Metals in combined conventional and vegetated road runoff control systems. Water Sci Technol 44:607–614PubMedGoogle Scholar
  76. 76.
    Shutes RBE, Revitt DM, Scholes LNL et al (2001) An experimental constructed wetland system for the treatment of highway runoff in the UK. Water Sci Technol 44:571–578PubMedGoogle Scholar
  77. 77.
    Pontier H, Williams JB, May E (2003) Behaviour of metals associated with sediments in a wetland based system for road runoff control. Water Sci Technol 48:291–298PubMedGoogle Scholar
  78. 78.
    Pontier H, Williams JB, May E (2004) Progressive changes in water and sediment quality in a wetland system for control of highway runoff. Sci Total Environ 319:215–224. doi: 10.1016/S0048-9697(03)00410-8 CrossRefPubMedGoogle Scholar
  79. 79.
    Shutes RBE, Ellis JB, Revitt DM, et al (2004) Urban and highway runoff treatment by constructed wetlands. In: Wong MH (ed) Developments in ecosystems, vol 1. Elsevier, Amsterdam, pp 361–382Google Scholar
  80. 80.
    Revitt DM, Shutes RBE, Jones RH et al (2004) The performances of vegetative treatment systems for highway runoff during dry and wet conditions. Sci Total Environ 334–335:261–270. doi: 10.1016/j.scitotenv.2004.04.046 CrossRefPubMedGoogle Scholar
  81. 81.
    Terzakis S, Fountoulakis MS, Georgaki I et al (2008) Constructed wetlands treating highway runoff in the central Mediterranean region. Chemosphere 72:141–149. doi: 10.1016/j.chemosphere.2008.02.044 CrossRefPubMedGoogle Scholar
  82. 82.
    Tromp K, Lima AT, Barendregt A, Verhoeven JTA (2012) Retention of heavy metals and poly-aromatic hydrocarbons from road water in a constructed wetland and the effect of de-icing. J Hazard Mater 203–204:290–298. doi: 10.1016/j.jhazmat.2011.12.024 CrossRefPubMedGoogle Scholar
  83. 83.
    Galvez-Cloutier R, Brin M-E, Dominguez G, et al. (2003) Quality evaluation of eutrophic sediments at St Augustin Lake. ASTM International, QuebecGoogle Scholar
  84. 84.
    Koretsky CM, Cuellar A, Haveman M et al (2008) Influence of Spartina and Juncus on saltmarsh sediments. II. Trace element geochemistry. Chem Geol 255:100–113. doi: 10.1016/j.chemgeo.2008.06.014 CrossRefGoogle Scholar
  85. 85.
    Guittonny-Philippe A, Masotti V, Höhener P et al (2014) Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: a review to overcome obstacles and suggest potential solutions. Environ Int 64:1–16. doi: 10.1016/j.envint.2013.11.016 CrossRefPubMedGoogle Scholar
  86. 86.
    Morteau B, Galvez-Cloutier R, Leroueil S (2006) Développement d’une chaîne de traitement pour l'atténuation des contaminants provenant des sels de voiries de l'autoroute Félix-Leclerc: lit filtrant et marais épurateur construit adapté. Raport technique. Université Laval, QuébecGoogle Scholar
  87. 87.
    Morteau B, Triffault-Bouchet G, Galvez R et al (2009) Treatment of salted road runoffs using Typha latifolia, Spergularia canadensis, and Atriplex patula: a comparison of their salt removal potential. J ASTM Int 6:218–227. doi: 10.1520/JAI102173 CrossRefGoogle Scholar
  88. 88.
    Morteau B, Triffault-bouchet G, Galvez R, Martel L (2015) Nutrient and removal kinetics impacts on salt phytoremediation by Atriplex patula and Typha angustifolia. J Environ Eng 141:1–8. doi: 10.1061/(ASCE)EE.1943-7870.0000889 CrossRefGoogle Scholar
  89. 89.
    Castonguay R, Galvez R (2014) Essai pour l’obtention d’une maîtrise sur la phytoextraction exercée par la Livèche écossaise (Ligusticum scothicum) et la Céloplèvre brillante (Coelopleurum lucidum) sur le chlorure de sodium provenant de l’eau de drainage contaminée par les sels de déglGoogle Scholar
  90. 90.
    Galvez-Cloutier R, Leroueil S, Pérez-Arzola (2006) Le lac Saint- Augustin, sa problématique d’eutrophisation et le lien avec les produits d’entretien de l’autoroute Félix-Leclerc. Rapport technique final 03605’3_06 présenté au ministère des Transports du QuébecGoogle Scholar
  91. 91.
    Guesdon G, de Santiago-Martín A, Galvez-Cloutier R (2016) Phytodesalinization potential of Typha angustifolia, Juncus maritimus, and Eleocharis palustris for removal of de-icing salts from runoff water. Environ Sci Pollut Res. doi: 10.1007/s11356-016-7176-1 Google Scholar
  92. 92.
    Lymbery AJ, Doupé RG, Bennett T, Starcevich MR (2006) Efficacy of a subsurface-flow wetland using the estuarine sedge Juncus kraussii to treat effluent from inland saline aquaculture. Aquac Eng 34:1–7. doi: 10.1016/j.aquaeng.2005.03.004 CrossRefGoogle Scholar
  93. 93.
    Rozema ER (2014) Can plants be used to remove Na+ and Cl- from nutrient solution in greenhouse production? PhD Thesis. University of Guelph, OntarioGoogle Scholar
  94. 94.
    Nilratnisakorn S, Thiravetyan P, Nakbanpote W (2009) A constructed wetland model for synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.). Water Sci Technol 60:1565–1574. doi: 10.2166/wst.2009.500 CrossRefPubMedGoogle Scholar
  95. 95.
    Zingelwa NS, Wooldridge J (2009) Tolerance of macrophytes and grasses to sodium and chemical oxygen demand in Winery wastewater. South African J Enol Vitic 30:117–123Google Scholar
  96. 96.
    Shelef O, Gross A, Rachmilevitch S (2012) The use of Bassia indica for salt phytoremediation in constructed wetlands. Water Res 46:3967–3976. doi: 10.1016/j.watres.2012.05.020 CrossRefPubMedGoogle Scholar
  97. 97.
    Boscaiu MG, Naranjo MA, Vicente O, Boira H (2007) Responses of halophytes to salt stress. Bull Univ Agric Sci Vet Med Cluj-Napoca Anim Sci Biotechnol 63–64:1–6Google Scholar
  98. 98.
    Boscaiu M, Ballesteros G, Naranjo MA et al (2011) Responses to salt stress in Juncus acutus and J. maritimus during seed germination and vegetative plant growth. Plant Biosyst—An Int J Deal with all Asp Plant Biol Off J Soc Bot Ital 145:770–777. doi: 10.1080/11263504.2011.628446 Google Scholar
  99. 99.
    Boscaiu M, Lull C, Llinares J et al (2013) Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. J Plant Ecol 6:177–186. doi: 10.1093/jpe/rts017 CrossRefGoogle Scholar
  100. 100.
    Naidoo G, Kift J (2006) Responses of the saltmarsh rush Juncus kraussii to salinity and waterlogging. Aquat Bot 84:217–225. doi: 10.1016/j.aquabot.2005.10.002 CrossRefGoogle Scholar
  101. 101.
    Greenwood ME, MacFarlane GR (2006) Effects of salinity and temperature on the germination of Phragmites australis, Juncus kraussii, and Juncus acutus: implications for estuarine restoration initiatives. Wetlands 26:854–861. doi: 10.1672/0277-5212(2006)26[854:EOSATO]2.0.CO;2 CrossRefGoogle Scholar
  102. 102.
    Mesleard F, Yavercovski N, Dutoit T (2015) Photoperiod buffers responses to salt and temperature during germination of two coastal salt marsh colonizers Juncus acutus and Juncus maritimus. Plant Biosyst Press 1–9. doi: 10.1080/11263504.2015.1007898 Google Scholar
  103. 103.
    Greenwood ME, MacFarlane GR (2009) Effects of salinity on competitive interactions between two Juncus species. Aquat Bot 90:23–29. doi: 10.1016/j.aquabot.2008.05.001 CrossRefGoogle Scholar
  104. 104.
    Miklovic S, Galatowitsch SM (2005) Effect of NaCl and Typha angustifolia L. on marsh community establishment: a greenhouse study. Wetlands 25:420–429. doi: 10.1672/16 CrossRefGoogle Scholar
  105. 105.
    Crain CM, Silliman BR, Bertness SL, Bertness MD (2004) Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology 85:2539–2549. doi: 10.1890/03-0745 CrossRefGoogle Scholar
  106. 106.
    Vicente MJ, Conesa E, Álvarez-Rogel J et al (2007) Effects of various salts on the germination of three perennial salt marsh species. Aquat Bot 87:167–170. doi: 10.1016/j.aquabot.2007.04.004 CrossRefGoogle Scholar
  107. 107.
    Pagter M, Bragato C, Malagoli M, Brix H (2009) Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquat Bot 90:43–51. doi: 10.1016/j.aquabotGoraietal.(2010).2008.05.005 CrossRefGoogle Scholar
  108. 108.
    Gorai M, Ennajeh M, Khemira H, Neffati M (2010) Combined effect of NaCl-salinity and hypoxia on growth, photosynthesis, water relations and solute accumulation in Phragmites australis plants. Flora Morphol Distrib Funct Ecol Plants 205:462–470. doi: 10.1016/j.flora.2009.12.021 CrossRefGoogle Scholar
  109. 109.
    Fediuc E, Lips SH, Erdei L (2005) O-acetylserine (thiol) lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response. J Plant Physiol 162:865–872. doi: 10.1016/j.jplph.2004.11.015 CrossRefPubMedGoogle Scholar
  110. 110.
    Howard RJ, Mendelssohn IA (1999) Salinity as a constraint on growth of oligohaline marsh macrophytes. I. Species variation in stress tolerance. Am J Bot 86:785–794CrossRefPubMedGoogle Scholar
  111. 111.
    Howard RJ, Mendelssohn IA (1999) Salinity as a constraint on growth of oligohaine marsh macrophytes. II. Salt pulses and recovery potential. Am J Bot 86:795–806. doi: 10.2307/1816011 CrossRefPubMedGoogle Scholar
  112. 112.
    Howard RJ, Rafferty PS (2006) Clonal variation in response to salinity and flooding stress in four marsh macrophytes of the northern Gulf of Mexico, USA. Environ Exp Bot 56:301–313. doi: 10.1016/j.envexpbot.2005.03.003 CrossRefGoogle Scholar
  113. 113.
    Gouvernement du Québec (2015) Guide d’aménagement des lieux d’élimination de neige et mise en œuvre du Règlement sur les lieux d’élimination de neigeGoogle Scholar
  114. 114.
    Almeida CMR, Mucha AP, Vasconcelos MTSD (2006) Comparison of the role of the sea club-rush Scirpus maritimus and the sea rush Juncus maritimus in terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment. Environ Pollut 142:151–159. doi: 10.1016/j.envpol.2005.09.002 CrossRefPubMedGoogle Scholar
  115. 115.
    Couto MNPFS, Basto MCP, Vasconcelos MTSD (2011) Suitability of different salt marsh plants for petroleum hydrocarbons remediation. Chemosphere 84:1052–1057. doi: 10.1016/j.chemosphere.2011.04.069 CrossRefPubMedGoogle Scholar
  116. 116.
    Almeida CMR, Mucha AP, Vasconcelos MTSD (2006) Variability of metal contents in the sea rush Juncus maritimus-estuarine sediment system through one year of plant’s life. Mar Environ Res 61:424–438. doi: 10.1016/j.marenvres.2005.12.002 CrossRefPubMedGoogle Scholar
  117. 117.
    Warren RS, Baird LM, Thompson AK (1985) Salt tolerance in cultured cells of Spartina pectinata. Plant Cell Rep 4:84–87CrossRefPubMedGoogle Scholar
  118. 118.
    Weiss J, Hondzo M, Biesboer D, Semmens M (2006) Laboratory study of heavy metal phytoremediation by three wetland macrophytes. Int J Phytoremediation 8:245–259. doi: 10.1080/15226510600846798 CrossRefPubMedGoogle Scholar
  119. 119.
    Smith KE, Schwab AP, Banks MK (2007) Phytoremediation of polychlorinated biphenyl (PCB)-contaminated sediment: a greenhouse feasibility study. J Environ Qual 36:239–244. doi: 10.2134/jeq2006.0089 CrossRefPubMedGoogle Scholar
  120. 120.
    Caudle KL, Maricle BR (2014) Physiological relationship between oil tolerance and flooding tolerance in marsh plants. Environ Exp Bot 107:7–14. doi: 10.1016/j.envexpbot.2014.05.003 CrossRefGoogle Scholar
  121. 121.
    Ministère des transports du Québec (2011) Norme, Tome VII, Chapitre 12. Chlorure de sodiumGoogle Scholar
  122. 122.
    Gottschall N, Boutin C, Crolla A et al (2007) The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada. Ecol Eng 29:154–163. doi: 10.1016/j.ecoleng.2006.06.004 CrossRefGoogle Scholar
  123. 123.
    Jordan TE, Whigham DF, Hofmockel KH, Pittek MA (2000) Nutrient and sediment removal by a restored wetland receiving agricultural runoff. J Environ Qual 32:1534–1547. doi: 10.2134/jeq2003.1534 CrossRefGoogle Scholar
  124. 124.
    Galvez-cloutier R, Guesdon G (2013) Développement d’un système de traitement des neiges/eaux usées salées issues des lieux d’élimination de neiges usées de la ville de Gatineau. Étude préliminaire. Technical Report. Laval University, Quebec, CanadaGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Département de Génie civil et Génie des eauxUniversité Laval, Pavillon Adrien-PouliotQuébecCanada

Personalised recommendations