Designing Enhanced Learning Environments in Physics: An Interdisciplinary Collaborative Approach Producing an Instrument for School Success

Chapter
Part of the Advances in Game-Based Learning book series (AGBL)

Abstract

Parallel, an innovative teaching and learning tool, was designed by a multidisciplinary team gathering together university and college professors, post-graduate students, teachers, as well as young adults and college students. The creation of Parallel, made possible fruitful collaboration between students, teachers and researchers. The collaborative experience was part of an effort to understand how a serious game on a mobile platform using augmented reality could be exploited in a formal educational context to overcome the difficulties encountered by physic’s college students. Up to now, 60 % of these students have been failing the course as they are being taught the laws of electromagnetism. As Lave, points out, “too often, school lessons are fraught with difficulty and failure more many students” (Lave, Anthropol Educ Q 16:171–176, 1985, p. 174). We will discuss how we arrive at the conclusion that Parallel can act as a potential instrument for student’s mastery of their own relationships with society and allow them to reinvest their learning with youth and the elderly. Although the empirical study we are presenting pinpoints a specific aspect of physic’s learning, it opens new horizons for cross-generational and age-oriented digital game-based learning from childhood to older adulthood.

Keywords

Augmented reality Mobile learning Physics Activity theory Longlife learning. 

References

  1. Alelis G, Bobrowicz A, Ang CS (2015) Comparison of engagement and emotional responses of older and younger adults interacting with 3D cultural heritage artefacts on personal devices. Behav Inform Technol 34(11):1064–1078CrossRefGoogle Scholar
  2. Alvarez J (2012, May 29) Les clés de la réussite d’un serious game par Julian Alvarez. http://www.ludovia.com/2012/05/les-cles-de-la-reussite-dun-serious-game-par-julian-alvarez/.
  3. Bajura M, Fuchs H, Ohbuchi R (1992) Merging virtual objects with the real world: seeing ultrasound imagery within the patient. ACM SIGGRAPH Comput Graph 26(2):203–210, ACMCrossRefGoogle Scholar
  4. Barma S (2009) Apprendre la technologie par l'éolienne: un thème favorisant l'intégration de la technologie à l'éducation aux sciences. In: Charland P, Fournier F, Riopel M, Potvin P (eds) Apprendre et enseigner la technologie: regards multiples. Multimondes, Québec, pp 15–139Google Scholar
  5. Barma S, Power TM, Daniel S (2010) Réalité augmentée et jeu mobile pour une éducation aux sciences et à la technologie. Culture numérique. Réseau scientifique pluridisciplinaire dans le domaine des technologies, applications et pratiques liées au numérique. http://culture.numerique.free.fr/publications/ludo10/barma_power_daniel_ludovia_2010.pdf
  6. Barma S, Daniel S, Bacon N, Gingras M-A, Fortin M (2015) Observation and analysis of a classroom teaching and learning practice based on augmented reality and serious games on mobile platforms. Int J Serious Games 2(2):69–88. doi:10.17083/ijsg.v2i2.66 CrossRefGoogle Scholar
  7. Bergig O, Hagbi N, El-Sana J, Billinghurst M (2009) In-place 3D sketching for authoring and augmenting mechanical systems. In: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality. Orlando, Florida, USA, pp 87–94Google Scholar
  8. Billinghurst M, Dünser A (2012) Augmented reality in the classroom. IEEE Comput Soc 45(7):56–63CrossRefGoogle Scholar
  9. Boucher DMB (2013) Investigating immersive augmented reality as a rehabilitation tool for Parkinson disease, Doctoral dissertation, The University of Western Ontario.Google Scholar
  10. Cawood S, Fiala M (2008) Augmented Reality a practical guide. Pragmatic BookshelfGoogle Scholar
  11. Cepni S, Ayvaci HS, Keleş E (2000) Understanding level of certificate students about physics concepts. In: The congress of national educational science, Abant Izzet Baysal University, Bolu, Turkey, pp 1335–1342.Google Scholar
  12. Conseil canadien sur l’apprentissage (2009) État de l’apprentissage virtuel au Canada. Conseil canadien sur l’apprentissage, Ottawa, Canada. http://www.ccl-cca.ca/pdfs/E-learning/E-Learning_Report_FINAL-F.PDF.
  13. Dillenbourg P, Jermann P (2010) Technology for classroom orchestration. In: Khine MS, Saleh IM (eds) New science of learning. Springer, New York, pp 525–552CrossRefGoogle Scholar
  14. Gouvernement du Québec, Ministère de l’Éducation du Loisir et du Sport (2006) Programme de Science et technologie. Enseignement secondaire deuxième cycle. Gouvernement du Québec, QuébecGoogle Scholar
  15. Dunleavy M, Dede C, Mitchell R (2009) Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. J Sci Educ Technol 18:7–22CrossRefGoogle Scholar
  16. Engeström Y (1987) Learning by expanding: an activity-theoretical approach to developmental research [online]. http://lchc.ucsd.edu/mca/Paper/Engestrom/expanding/toc.htm.
  17. Engeström Y (2001) Expansive learning at work: toward an activity-theoretical reconceptualization. J Educ Work 14(1):133–156CrossRefGoogle Scholar
  18. Engeström Y (2015) Learning by expanding: an activity-theoretical approach to developmental research, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  19. Engeström Y, Sannino A (2011) Discursive manifestations of contradictions in organizational change efforts. A methodological framework. J Organ Chang Manag 24(3):368–387CrossRefGoogle Scholar
  20. Hennessy S (2000) Graphing investigations using portable (palmtop) technology. J Comput Assist Learn 16:243–258CrossRefGoogle Scholar
  21. Hestenes D, Wells M, Swackhamer G (1992) Force concept inventory. Phys Teach 30:141–158CrossRefGoogle Scholar
  22. Kaplan Akili G (2007) Games and simulations: a new approach in education? In: Gibson D, Aldrich C, Prensky M (eds) Games and simulations in online learning: research and development frameworks. Idea Group Inc. (IGI), Hershey, PA, pp 1–18CrossRefGoogle Scholar
  23. Kaufmann H, Schmalstieg D (2003) Mathematics and geometry education with collaborative augmented reality. Comput Graph 27(3):339–345. doi:10.1016/S0097-8493(03)00028-1 CrossRefGoogle Scholar
  24. Kim P, Buckner E, Kim H, Makany T, Taleja N, Parikh V (2012) A comparative analysis of a game-based mobile learning model in low-socioeconomic communities of India. Int J Educ Dev 32(2):329–340. doi:10.1016/j.ijedudev.2011.05.008 CrossRefGoogle Scholar
  25. Knowles MS, Holton EF III, Swanson RA (2011) The adult learner: the definitive classic in adult education and human resource development, 7th edn. Butterwort-Heinemann, Kidlington OxfordGoogle Scholar
  26. Kukulska-Hulme A, Evans D, Traxler J (2005) Landscape study in wireless and mobile learning in the post-16 sector. Technical report. Joint Information Systems committee, Bristol.Google Scholar
  27. Kurz D, Fedosov A, Diewald S, Guttier J, Geilhof B, Heuberger M (2014) [Poster] Towards mobile augmented reality for the elderly. In: Mixed and augmented reality (ISMAR), 2014 IEEE international symposium on IEEE, pp 275–276.Google Scholar
  28. Larochelle M, Désautels J (2003) Descriptions estudiantines de la nature et de la fabrication des savoirs scientifiques. In: Lafortune L, Deaudelin C, Martin D (eds) Conceptions, croyances et représentations en maths, sciences et technos. Presses de l’Université du Québec, Québec, pp 149–174Google Scholar
  29. Lave J (1985) Introduction: Situationally specific practice. Anthropol Educ Q 16:171–176CrossRefGoogle Scholar
  30. Liang S (2015) Research proposal on reviewing augmented reality applications for supporting ageing people. In: 6th international conference on applied human factors and ergonomics (AHFE 2015) and the affiliated conferences, AHFE 2015, vol 3, pp 219–226.Google Scholar
  31. Liarokapis F (2006) An exploration from virtual to augmented reality gaming. Simul Gaming 37(4):507–533CrossRefGoogle Scholar
  32. Liarokapis F, Mourkoussis N, White M, Darcy J, Sifniotis M, Petridis P, Basu A, Lister PF (2004) Web3D and augmented reality to support engineering education. World Trans Eng Technol Educ 3(1):11–14Google Scholar
  33. Malik SA, Abdullah LM, Mahmud M, Azuddin M (2013) Mobile applications using augmented reality to support older people. In: Research and innovation in information systems (ICRIIS), 2013 international conference on IEEE, pp 374–379.Google Scholar
  34. Michaud L, Alvarez J (2008) Serious games: advergaming, edugaming, training. IDATE, ParisGoogle Scholar
  35. Miettienen R, Peisa S (2002) Integrating school-bases learning with the study of change in working life: the alternative enterprise method. Center for Activity and Developmental Work Research, University of Helsinki, Finland. Helsinki School of Vocational Teacher Education, Helsinki, Finland.Google Scholar
  36. Monk H (2011) Learning and development across the generations: a cultural-historical study of everyday family practices. http://arrow.monash.edu.au/hdl/1959.1/476503
  37. Nickels S, Sminia H, Mueller SC, Kools B, Dehof AK, Lenhof HP, Hildebrandt A (2012). ProteinScanAR—an augmented reality web application for high school education in biomolecular life sciences. In: Proceedings of the 16th IEEE international conference on information visualization, Saarbrucken, Germany, pp 578–583.Google Scholar
  38. O’Malley C, Vavoula G, Glew J, Taylor J, Sharples M, Lefrere P (2003) Guidelines for learning/teaching/tutoring in a mobile environment. Mobilearn Project. http://www.mobilearn.org/download/results/guidelines.pdf.
  39. Ong SK, Yuan ML, Nee AC (2008) Augmented reality applications in manufacturing: a survey. Int J Prod Res 46(10):2707–2742. doi:10.1080/00207540601064773 CrossRefGoogle Scholar
  40. Pachler N, Bachmair B, Cook J (2010) Mobile learning: structures, agency, practices. Springer, New YorkCrossRefGoogle Scholar
  41. Piette J, Pons C-M, Giroux L (2007) Les jeunes et Internet 2006: Appropriation des nouvelles technologies. Ministère de la Culture et des communications, QuébecGoogle Scholar
  42. Prensky M (2001) Digital game-based learning. McGrae-Hill, New-YorkGoogle Scholar
  43. Quinn C (2000) mLearning: Mobile, wireless, in your pocket learning. Learning in the new economy e-Magazine. http://www.linezine.com/2.1/features/cqmmwiyp.htm.
  44. Roberts-Mahoney H, Means AJ, Garrison MJ (2016) Netflixing human capital development: personalized learning technology and the corporatization of K-12 education. J Educ Policy 31(4):405–420. doi:10.1080/02680939.2015.1132774 CrossRefGoogle Scholar
  45. Robitaille J-P (2010) La relève en sciences et technologies au Québec: un état des lieux. Observatoire des sciences et des technologies, MontréalGoogle Scholar
  46. Sanchez E, Jouneau-Sion C (2010) Les jeux, des espaces de réflexivité permettant la mise en oeuvre de démarches d’investigation. In: Sauvé L, Kaufman D (Eds.), Ressources et travail collectif dans la mise en place des démarches d’investigation dans l’enseignement des sciences. Actes des journées scientifiques, DIES Lyon.Google Scholar
  47. Saracchini R, Catalina C, Bordoni L (2015) A mobile augmented reality assistive technology for the elderly/tecnología asistencial móvil, con realidad aumentada, para las personas mayores. Comunicar 23(45):65CrossRefGoogle Scholar
  48. Savill-Smith C, Kent P (2003) The use of palmtop computers for learning: a review of the literature. Learning and Skills Development Agency, LondonGoogle Scholar
  49. Sharples M, Sánchez IA, Milrad M, Vavoula G (2005) Towards a theory of mobile learning. 4th World conference on learning, Cape Town, South Africa.Google Scholar
  50. State A, Hirota G, Chen DT, Garrett WF, Livingston MA (1996) Superior Augmented-Reality Registration by Integrating Landmark Tracking and Magnetic Tracking. Proceedings of SIGGRAPH 96, pp. 429–438. doi: 10.1145/237170.237282
  51. Sutherland IE (1965) The ultimate display. In: Packer R, Jordan K (eds) Multimedia: from Wagner to virtual reality. Norton, New York, pp 252–256Google Scholar
  52. Wali E, Winters N, Oliver M (2008) Maintaining, changing and crossing contexts: an activity theoretic reinterpretation of mobile learning. Res Learn Technol 16(1):41–57. doi:10.1080/09687760701850190 CrossRefGoogle Scholar
  53. Waycott J, Jones A, Scanlon E (2005) PDAs as lifelong learning tools: an activity theory based analysis. Learn Media Technol 30(2):107–130CrossRefGoogle Scholar
  54. Yin RK (2015) Qualitative research from start to finish. Guilford Publications, New YorkGoogle Scholar
  55. Zhou F, Duh HBL, Billinghurst M (2008). Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR. In: Proceedings of the 7th IEEE/ACM international symposium on mixed and augmented reality, IEEE Computer Society, pp 193–202.Google Scholar
  56. Zurita G, Nussbaum M (2007) A conceptual framework based on activity theory for mobile CSCL. Br J Educ Technol 38(2):211–235CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Université LavalQuebec CityCanada

Personalised recommendations