Head-Pose Estimation In-the-Wild Using a Random Forest

  • Roberto Valle
  • José Miguel Buenaposada
  • Antonio Valdés
  • Luis Baumela
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9756)


Human head-pose estimation has attracted a lot of interest because it is the first step of most face analysis tasks. However, many of the existing approaches address this problem in laboratory conditions. In this paper, we present a real-time algorithm that estimates the head-pose from unrestricted 2D gray-scale images. We propose a classification scheme, based on a Random Forest, where patches extracted randomly from the image cast votes for the corresponding discrete head-pose angle. In the experiments, the algorithm performs similar and better than the state-of-the-art in controlled and in-the-wild databases respectively.


Head-pose estimation Random forest Real-time In-the-wild 



The authors gratefully acknowledge funding from the Spanish Ministry of Economy and Competitiveness under project SPACES-UPM (TIN2013-47630-C2-2R).


  1. 1.
    Ba, S.O., Odobez, J.M.: Multiperson visual focus of attention from head pose and meeting contextual cues. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 101–116 (2011)CrossRefGoogle Scholar
  2. 2.
    Balasubramanian, V., Ye, J., Panchanathan, S.: Biased manifold embedding: a framework for person-independent head pose estimation (2007)Google Scholar
  3. 3.
    BenAbdelkader, C.: Robust head pose estimation using supervised manifold learning. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 518–531. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning. Tech. Rep. MSR-TR-2011-114, Microsoft Research (2011)Google Scholar
  6. 6.
    Dantone, M., Gall, J., Fanelli, G., Gool, L.V.: Real-time facial feature detection using conditional regression forests. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR) (2012)Google Scholar
  7. 7.
    Dollar, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: Proceedings on British Machine Vision Conference (BMVC) (2009)Google Scholar
  8. 8.
    Fanelli, G., Dantone, M., Gall, J., Fossati, A., Van Gool, L.: Random forests for real time 3D face analysis. Int. J. Comput. Vis. 101(3), 437–458 (2013)CrossRefGoogle Scholar
  9. 9.
    Gaschler, A., Jentzsch, S., Giuliani, M., Huth, K., de Ruiter, J., Knoll, A.: Social behavior recognition using body posture and head pose for human-robot interaction. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS) (2012)Google Scholar
  10. 10.
    Geng, X., Xia, Y.: Head pose estimation based on multivariate label distribution. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  11. 11.
    Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-PIE (2008)Google Scholar
  12. 12.
    Haj, M.A., González, J., Davis, L.S.: On partial least squares in head pose estimation: how to simultaneously deal with misalignment. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR) (2012)Google Scholar
  13. 13.
    Hara, K., Chellappa, R.: Growing regression forests by classification: applications to object pose estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 552–567. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    Marín-Jiménez, M.J., Ferrari, V., Zisserman, A.: Here’s looking at you, kid: detecting people looking at each other in videos. In: Proceedings on British Machine Vision Conference (BMVC) (2011)Google Scholar
  15. 15.
    Murphy-Chutorian, E., Trivedi, M.M.: Head pose estimation in computer vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 607–626 (2009)CrossRefGoogle Scholar
  16. 16.
    Stiefelhagen, R.: Estimating head pose with neural networks. In: Proceedings of International Conference on Pattern Recognition Workshops (ICPRW) (2004)Google Scholar
  17. 17.
    Subramanian, R., Yan, R.Y., Staiano, J., Lanz, O., Sebe, N.: On the relationship between head pose, social attention and personality prediction for unstructured and dynamic group interactions. In: Proceedings of International Conference on Multimodal Interaction (2013)Google Scholar
  18. 18.
    Sundararajan, K., Woodard, D.L.: Head pose estimation in the wild using approximate view manifolds. In: Proceedings of Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2015)Google Scholar
  19. 19.
    Valenti, R., Sebe, N., Gevers, T.: Combining head pose and eye location information for gaze estimation. IEEE Trans. Image Process. 21(2), 802–815 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wu, J., Trivedi, M.M.: A two-stage head pose estimation framework and evaluation. Pattern Recognit. 41(3), 1138–1158 (2008)CrossRefzbMATHGoogle Scholar
  21. 21.
    Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR) (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Roberto Valle
    • 1
  • José Miguel Buenaposada
    • 2
  • Antonio Valdés
    • 3
  • Luis Baumela
    • 1
  1. 1.Univ. Politécnica MadridMadridSpain
  2. 2.Univ. Rey Juan CarlosMóstolesSpain
  3. 3.Univ. Complutense MadridMadridSpain

Personalised recommendations