An Approach to Analyse a Hashtag-Based Topic Thread in Twitter

  • Ekaterina Shabunina
  • Stefania Marrara
  • Gabriella Pasi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9612)


In last years, the spread of social Web has promoted a strong interest in analyzing how information related to a given topic diffuses. Nevertheless, this is still quite an unexplored field in the literature. In this paper we propose a general approach that makes use of a set of Natural Language Processing (NLP) techniques to analyse some of the most important features of information related to a topic. The domain of this study is Twitter, since here topics are easily identified by means of hashtags. In particular, our aim is to analyse the possible change over time of the content sub-topicality and sentiment in the tracked tweets, and bring out their relationships with the users’ demographic features.


Corpus analysis Natural language processing techniques Twitter Information demographic User generated content analysis 


  1. 1.
    Artwick, C.G.: News sourcing and gender on twitter. Journalism 15(8), 1111–1127 (2014)CrossRefGoogle Scholar
  2. 2.
    Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: Proceedings of the 23rd International Conference on World Wide Web, WWW 2014, pp. 925–936. ACM, New York (2014)Google Scholar
  3. 3.
    Lagnier, C., Denoyer, L., Gaussier, E., Gallinari, P.: Predicting information diffusion in social networks using content and user’s profiles. In: Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., Yilmaz, E. (eds.) ECIR 2013. LNCS, vol. 7814, pp. 74–85. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Lin, Y.-R., Margolin, D., Keegan, B., Baronchelli, A., Lazer, D.: #bigbirds never die: Understanding social dynamics of emergent hashtags (2013)Google Scholar
  5. 5.
    Mislove, A., Lehmann, S., Ahn, Y., Onnela, J., Rosenquist, J.N.: Understanding the demographics of twitter users. In: ICWSM (2011)Google Scholar
  6. 6.
    Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, pp. 695–704. ACM, New York (2011)Google Scholar
  7. 7.
    Simmons, M.P., Adamic, L.A., Adar, E.: Memes online: Extracted, subtracted, injected, and recollected. In: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (2011)Google Scholar
  8. 8.
    Yang, J., Leskovec, J.: Modeling information diffusion in implicit networks. In: Proceedings of the IEEE International Conference on Data Mining, ICDM 2010, pp. 599–608. IEEE Computer Society, Washington (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ekaterina Shabunina
    • 1
  • Stefania Marrara
    • 1
  • Gabriella Pasi
    • 1
  1. 1.Dipartimento di Informatica Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanItaly

Personalised recommendations