Skip to main content

Data Science for Massive Networks

  • Chapter
  • First Online:
Information Retrieval (RuSSIR 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 573))

Included in the following conference series:

  • 700 Accesses

Abstract

In this chapter we attempt to briefly describe a history of massive networks, their place in modern life, and discuss open problems related to them. We start with giving a historical overview indicating the most influential milestones in the development of networks. Then we consider how real-life massive datasets can be represented in terms of networks describing some examples and summarizing properties of such networks. We also discuss cases of modeling real-life massive networks. In addition, we give some examples of how to optimize in massive networks and in which areas we can apply these techniques. We conclude by discussing open problems of massive networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abello, J., Pardalos, P.M., Resende, M.: On maximum clique problems in very large graphs. In: Abello, J.M., Vitter, J.S. (eds.) External Memory Algorithms. DIMACS Series, vol. 50, pp. 119–130. AMS, Providence (1999)

    Google Scholar 

  2. Abello, J., Pardalos, P.M., Resende, M.G.S.: Handbook of Massive Data Sets. Kluwer Academic Publishers, Dordrecht (2002)

    Book  MATH  Google Scholar 

  3. Aiello, W., Chung, F., Lu, L.: A random graph model for power law graphs. Exp. Math. 10, 53–66 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aiello, W., Chung, F., Lu, L.: Random evolution in massive graphs. In: Abello, J., Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Massive Data Sets, pp. 97–122. Kluwer Academic Publishers, Dordrecht (2002)

    Chapter  Google Scholar 

  5. Albert, R., Jeong, H., Barabási, A.-L.: Internet: diameter of the world-wide web. Nature 401, 130–131 (1999)

    Article  Google Scholar 

  6. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arulsevan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting critical nodes in sparse graphs. Comput. Oper. Res. 36, 2193–2200 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bansal, S., Khandelwal, S., Meyers, L.A.: Exploring biological network structure with clustered random networks. BMC Bioinform. 10(405) (2009)

    Google Scholar 

  9. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barabási, A.-L., Albert, R., Jeong, H.: Scale-free characteristics of random networks: the topology of the world-wide web. Phys. A: Stat. Mech. Appl. 281(14), 9–77 (2000)

    Google Scholar 

  11. Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.M.: Improvements to MCS algorithm for the maximum clique problem. J. Comb. Optim. 27, 397–416 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bautin, G., Kalyagin, V., Koldanov, A., Koldanov, P., Pardalos, P.M.: Simple measure of similarity for the market graph construction. Comput. Manag. Sci. 10, 105–124 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  14. Boginski, V., Butenko, S., Pardalos, P.M.: On structural properties of the market graph. In: Innovations in Financial and Economic Networks. Edward Elgar Publishers (2003)

    Google Scholar 

  15. Boginski, V., Butenko, S., Pardalos, P.M.: Modeling and optimization in massive graphs. In: Pardalos, P.M., Wolkowicz, H. (eds.) Novel Approaches to Hard Discrete Optimization, pp. 17–39. AMS, Providence (2003)

    Chapter  Google Scholar 

  16. Boginski, V., Butenko, S., Pardalos, P.M.: Statistical analysis of financial networks. Comput. Stat. Data Anal. 48, 431–443 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bollobás, B.: Extremal Graph Theory. Academic Press, New York (1978)

    MATH  Google Scholar 

  18. Bollobás, B.: Random Graphs. Academic Press, New York (1985)

    MATH  Google Scholar 

  19. Bollobás, B., Riordan, O.M., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Struct. Algorithms 18(3), 279–290 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bollobás, B., Riordan, M.: Mathematical results on scale-free random graphs. In: Bornholdt, S., Schluster, H.G. (eds.) Handbook of Graphs and Networks: From the Genome to the Internet, pp. 1–34. Wiley-VCH, London (2003)

    Google Scholar 

  21. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 1–74. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  22. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. Comput. Netw. 33, 309–320 (2000)

    Article  Google Scholar 

  23. Dinh, T.N., Xuan, Y., Thai, M.T., Pardalos, P.M., Znati, T.: On new approaches of assessing network vulnerability: hardness and approximation. IEEE/ACM Trans. Netw. 20(2), 609–619l (2012)

    Article  Google Scholar 

  24. Google Official Blog. https://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

  25. Hayes, B.: Graph theory in practice. Am. Sci. 88, 9–13 (2000)

    Article  Google Scholar 

  26. Iasemidis, L., Shiau, D., Sackellares, J., Pardalos, P.M.: Quadratic binary programming and dynamic system approach to determine the predictability of epileptic seizures. J. Comb. Optim. 5, 9–26 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Iasemidis, L., Sackellares, J., Shiau, D., Chaovalitwongse, W., Carney, P., Principe, J., Yang, M., Yatsenko, V., Roper, S., Pardalos, P.M.: Seizure warning algorithm based on optimization and nonlinear dynamics. Math. Program. 101(2), 365–385 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Kocheturov, A., Batsyn, M., Pardalos, P.M.: Dynamics of cluster structures in a financial market network. Phys. A: Stat. Mech. Appl. 413, 523–533 (2014)

    Article  Google Scholar 

  29. Korenkevych, D., Chien, J.-H., Zhang, J., Shiau, D.-S., Sackellares, C., Pardalos, P.M.: Small world networks in computational neuroscience. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 3057–3088. Springer, New York (2013)

    Chapter  Google Scholar 

  30. Kumar, S.R., Raghavan, P., Rajagopalan, S., Tompkins, A.: Extracting large-scale knowledge bases from the web. In: Proceedings of the 25th International Conference on VLDB, pp. 639–650. Morgan Kaufmann Publishers (1999)

    Google Scholar 

  31. Kumar, S.R., Raghavan, P., Rajagopalan, S., Tompkins, A.: Trawling the web for emerging cyber communities. Comput. Netw. 31(11–16), 1481–1493 (1999)

    Article  Google Scholar 

  32. Kumar, S.R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tompkins, A., Upfal, E.: Stochastic models for the web graph. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 57–65. IEEE Computer Society (2000)

    Google Scholar 

  33. Mantegna, R.N.: Hierarchical structure in financial markets. Eur. Phys. J. B 11, 193–197 (1999)

    Article  Google Scholar 

  34. Milgram, S.: The small-world problem. Psychol. Today 1, 61–67 (1967)

    Google Scholar 

  35. Murre, J.M.J., Sturdy, D.P.F.: The connectivity of the brain: multi-level quantitative analysis. Biol. Cybern. 73(6), 529–545 (1995)

    Article  MATH  Google Scholar 

  36. Newman, M., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)

    Article  Google Scholar 

  37. Ostroumova, L., Ryabchenko, A., Samosvat, E.: Generalized preferential attachment: tunable power-law degree distribution and clustering coefficient. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds.) WAW 2013. LNCS, vol. 8305, pp. 185–202. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  38. Serrano, M.A., Boguñá, M.: Tuning clustering in random networks with arbitrary degree distributions. Phys. Rev. E 72(3), 036133 (2005)

    Article  Google Scholar 

  39. Skidmore, F., Korenkevych, D., Liu, Y., He, G., Bullmore, E., Pardalos, P.M.: Connectivity brain networks based on wavelet correlation analysis in Parkinson fMRI data. Neurosci. Lett. 499, 47–51 (2011)

    Article  Google Scholar 

  40. Shangin, R.E., Pardalos, P.M.: Heuristics for minimum spanning k-tree problem. Procedia comput. sci. 31, 1074–1083 (2014)

    Article  Google Scholar 

  41. Thai, M., Pardalos, P.M.: Handbook of Optimization in Complex Networks: Theory and Applications. Springer Optimization and Its Applications. Springer, New York (2011)

    Google Scholar 

  42. Thai, M., Pardalos, P.M.: Handbook of Optimization in Complex Networks: Communication and Social Networks. Springer Optimization and Its Applications. Springer, New York (2011)

    MATH  Google Scholar 

  43. Tumminello, M., Aste, T., Matteo, T., Mantegna, R.N.: A tool for filtering information in complex systems. PNAS 102, 10421–10426 (2005)

    Article  Google Scholar 

  44. Volz, E.: Random networks with tunable degree distribution and clustering. Phys. Rev. E 70(5), 056115 (2004)

    Article  Google Scholar 

  45. Walteros, J.L., Pardalos, P.M.: A decomposition approach for solving critical clique detection problems. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 393–404. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  46. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  47. Wu, B.Y., Chao, K.-M.: Spanning Trees and Optimization Problems. Taylor & Francis Group, London (2004)

    Book  MATH  Google Scholar 

  48. Zhang, J., Xanthopoulos, P., Liu, C., Bearden, S., Uthman, B.M., Pardalos, P.M.: Real-time differentiation of nonconvulsive status epilepticus from other encephalopathies using quantitative EEG analysis: a pilot study. Epilepsia 51(2), 243–250 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Laboratory of Algorithms and Technologies for Network Analysis, National Research University Higher School of Economics, Nizhny Novgorod, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Kocheturov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kocheturov, A., Pardalos, P.M. (2016). Data Science for Massive Networks. In: Braslavski, P., et al. Information Retrieval. RuSSIR 2015. Communications in Computer and Information Science, vol 573. Springer, Cham. https://doi.org/10.1007/978-3-319-41718-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41718-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41717-2

  • Online ISBN: 978-3-319-41718-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics