Skip to main content

k-Morik: Mining Patterns to Classify Cartified Images of Katharina

  • Chapter
  • First Online:
Solving Large Scale Learning Tasks. Challenges and Algorithms

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9580))

  • 1466 Accesses

Abstract

When building traditional Bag of Visual Words (BOW) for image classification, the k-Means algorithm is usually used on a large set of high dimensional local descriptors to build a visual dictionary. However, it is very likely that, to find a good visual vocabulary, only a sub-part of the descriptor space of each visual word is truly relevant for a given classification problem. In this paper, we explore a novel framework for creating a visual dictionary based on Cartification and Pattern Mining instead of the traditional k-Means algorithm. Preliminary experimental results on face images show that our method is able to successfully differentiate photos of Elisa Fromont, and Bart Goethals from Katharina Morik.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for projected clustering of high dimensional data streams. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases-Volume 30, VLDB Endowment, pp. 852–863 (2004)

    Google Scholar 

  2. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications, vol. 27. ACM (1998)

    Google Scholar 

  3. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)

    Google Scholar 

  4. Aksehirli, E., Goethals, B., Müller, E.: Efficient cluster detection by ordered neighborhoods. In: Madria, S., Hara, T. (eds.) DaWaK 2015. LNCS, vol. 9263, pp. 15–27. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  5. Aksehirli, E., Goethals, B., Müller, E., Vreeken, J.: Cartification: a neighborhood preserving transformation for mining high dimensional data. In: 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013, pp. 937–942 (2013)

    Google Scholar 

  6. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is nearest neighbor meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Chandra, S., Kumar, S., Jawahar, C.V.: Learning multiple non-linear sub-spaces using k-rbms. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2778–2785. IEEE (2013)

    Google Scholar 

  8. Chapelle, O., Haffner, P., Vapnik, V.: SVMs for histogram-based image classification. IEEE Trans. Neural Networks 10(5), 1055 (1999)

    Article  Google Scholar 

  9. Chen, G., Lerman, G.: Spectral curvature clustering (scc). Int. J. Comput. Vis. 81(3), 317–330 (2009)

    Article  Google Scholar 

  10. Cheng, C.-H., Ada Waichee, F., Zhang, Y.: Entropy-based subspace clustering for mining numerical data. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 84–93. ACM (1999)

    Google Scholar 

  11. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)

    Google Scholar 

  12. Elhamifar, E., Vidal, R.: Sparse subspace clustering: Algorithm, theory, and applications (2012)

    Google Scholar 

  13. Fernando, B., Fromont, É., Tuytelaars, T.: Mining mid-level features for image classification. Int. J. Comput. Vis. 108(3), 186–203 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gilbert, A., Illingworth, J., Bowden, R.: Fast realistic multi-action recognition using mined dense spatio-temporal features. In: ICCV, pp. 925–931 (2009)

    Google Scholar 

  15. Hinton, G.E.: A practical guide to training restricted boltzmann machines. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade, 2nd edn. LNCS, vol. 7700, pp. 599–619. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. 1, pp. 604–610. IEEE Computer Society, Washington (2005)

    Google Scholar 

  17. Kim, S., Jin, X., Han, J.: Disiclass: discriminative frequent pattern-based image classification. In: Tenth International Workshop on Multimedia Data Mining (2010)

    Google Scholar 

  18. Kriegel, H.-P., Kröger, P., Zimek, A.: Lustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowl. Disc. Data (TKDD) 3(1), 1 (2009)

    Article  Google Scholar 

  19. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 2169–2178. IEEE (2006)

    Google Scholar 

  20. David, G.: Lowe: distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  21. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)

    Article  Google Scholar 

  22. Nagesh, H., Goil, S., Choudhary, A.: Adaptive grids for clustering massive data sets. In: Proceedings of the 1st SIAM ICDM, Chicago, IL, vol. 477 (2001)

    Google Scholar 

  23. Nowozin, S., Tsuda, K., Uno, T., Kudo, T., Bakir, G.: Weighted substructure mining for image analysis. In: CVPR (2007)

    Google Scholar 

  24. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Quack, T., Ferrari, V., Leibe, B., Van Gool, L.: Efficient mining of frequent and distinctive feature configurations. In: ICCV (2007)

    Google Scholar 

  26. Quack, T., Ferrari, V., Van Gool, L.: Video mining with frequent itemset configurations. In: Sundaram, H., Naphade, M., Smith, J.R., Rui, Y. (eds.) CIVR 2006. LNCS, vol. 4071, pp. 360–369. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)

    Article  MATH  Google Scholar 

  28. Tuytelaars, T., Lampert, C.H., Blaschko, M.B., Buntine, W.L.: Unsupervised object discovery: a comparison. Int. J. Comput. Vis. 88(2), 284–302 (2010)

    Article  Google Scholar 

  29. Vailaya, A., Figueiredo, M.A.T., Jain, A.K., Zhang, H.J.: Image classification for content-based indexing. IEEE Trans. Image Process. 10(1), 117–130 (2001)

    Article  MATH  Google Scholar 

  30. Vidal, R., Favaro, P.: Low rank subspace clustering (lrsc). Pattern Recogn. Lett. 43, 47–61 (2014). ICPR2012 Awarded Papers

    Article  Google Scholar 

  31. Vidal-Naquet, M., Ullman, S.: Object recognition with informative features and linear classification. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, ICCV 2003, p. 281. IEEE Computer Society, Washington (2003)

    Google Scholar 

  32. Von Luxburg, U.: A tutorial on spectral clustering. Stat. comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  33. Voravuthikunchai, W., Crémilleux, B., Jurie, F.: Histograms of pattern sets for image classification and object recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, United States, pp. 1–8 (2014)

    Google Scholar 

  34. Woo, K.-G., Lee, J.-H., Kim, M.-H., Lee, Y.-J.: Findit: a fast and intelligent subspace clustering algorithm using dimension voting. Inf. Softw. Technol. 46(4), 255–271 (2004)

    Article  Google Scholar 

  35. Yang, J., Wang, W., Wang, H., Philip, Y.: \(\delta \)-clusters: capturing subspace correlation in a large data set. In: Proceedings of 18th International Conference on Data Engineering, pp. 517–528. IEEE (2002)

    Google Scholar 

  36. Yao, B., Fei-Fei, L.: Grouplet: a structured image representation for recognizing human and object interactions. In: CVPR (2010)

    Google Scholar 

  37. Yuan, J., Ying, W., Yang, M.: Discovery of collocation patterns: from visual words to visual phrases. In: CVPR (2007)

    Google Scholar 

  38. Yuan, J., Yang, M., Ying, W.: Mining discriminative co-occurrence patterns for visual recognition. In: CVPR, pp. 2777–2784, June 2011

    Google Scholar 

  39. Zhang, T., Szlam, A., Wang, Y., Lerman, G.: Hybrid linear modeling via local best-fit flats. Int. J. Comput. Vis. 100(3), 217–240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Goethals .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fromont, E., Goethals, B. (2016). k-Morik: Mining Patterns to Classify Cartified Images of Katharina. In: Michaelis, S., Piatkowski, N., Stolpe, M. (eds) Solving Large Scale Learning Tasks. Challenges and Algorithms. Lecture Notes in Computer Science(), vol 9580. Springer, Cham. https://doi.org/10.1007/978-3-319-41706-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41706-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41705-9

  • Online ISBN: 978-3-319-41706-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics