Assistance Systems in Manufacturing: A Systematic Review

  • Xiaozhou Yang
  • Daniela Alina Plewe
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 490)


With this paper we provide an overview of current trends and approaches related to assistance systems in industrial manufacturing contexts. We systematically reviewed publications relevant to the domain in order to extract and describe recent developments and application scenarios. Further, we took account of current use cases, technologies, and design strategies. Having laid out the state of the art we proceeded to identify current challenges for assistive technology in the realm of industrial production. We concluded with discussing the findings and giving an outlook regarding future research questions and possible developments.


Human factors Human-system integration Assistance systems Smart factory Virtual reality Augmented reality Tangible user interfaces Smart environments Augmented workplaces Industrialization 4.0 Adaptive systems 


  1. 1.
    Röcker, C.: Chances and challenges of intelligent technologies in the production and retail sector. Int. J. Bus. Econ. Sci. 2(3), 150–161 (2010). Reprint of: Röcker, C.: Ambient intelligence in the production and retail sector: emerging opportunities and potential pitfalls. In: Proceedings of the International Conference on Innovation, Management and Technology (ICIMT’09), Tokyo, Japan, pp. 1393–1404, 27–29 May 2009Google Scholar
  2. 2.
    Korn, O., Funk, M., Abele, S., Hörz, T., Schmidt, A.: Context-aware assistive systems at the workplace: analyzing the effects of projection and gamification. In: 7th International Conference on Pervasive Technologies Related to Assistive Environments, p. 38, ACM (2014)Google Scholar
  3. 3.
    Schreiber, W., Alt, T., Edelmann, M., Malzkorn-Edling, S.: Augmented reality for industrial applications—a new approach to increase productivity? In: WWDU 2002 World Wide Work, pp. 22–25 (2002)Google Scholar
  4. 4.
    Büttner, S., Sand, O., Röcker, C.: Extending the design space in industrial manufacturing through mobile projection. In: 17th International Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI’15), pp. 1130–1133. ACM Press (2015)Google Scholar
  5. 5.
    Flatt, H., Koch, N., Röcker, C., Günter, A., Jasperneite, J.: A context-aware assistance system for maintenance applications in smart factories based on augmented reality and indoor localization. In: 20th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA’15), Luxembourg (2015)Google Scholar
  6. 6.
    Paelke, V., Röcker, C.: User interfaces for cyber-physical systems: challenges and possible approaches. In: Marcus, A. (ed.) Design, User Experience, and Usability: Design Discourse, Part I. LNCS, vol. 9186, pp. 75–85. Springer International Publishing, Switzerland (2015)Google Scholar
  7. 7.
    Sand, O., Büttner, S., Paelke, V., Röcker, C.: smARt.Assembly—projection-based augmented reality for supporting assembly workers. To appear in: International Conference on Human-Computer Interaction, Toronto, Canada (2016)Google Scholar
  8. 8.
    Guo, A., Raghu, S., Xie, X., Ismail, S., Luo, X., Simoneau, J., Gilliland, S., Baumann, H., Southern, C., Starner, T.: A comparison of order picking assisted by head-up display (HUD), cart-mounted display (CMD), light, and paper pick list. In: ACM International Symposium on Wearable Computers, pp. 71–78. ACM (2014)Google Scholar
  9. 9.
    Ong, S.K., Pang, Y., Nee, A.Y.: Augmented reality aided assembly design and planning. CIRP Ann. Manuf. Technol. 56(1), 49–52 (2007)CrossRefGoogle Scholar
  10. 10.
    Zhou, J., Lee, I., Thomas, B., Menassa, R., Farrant, A., Sansome, A.: Applying spatial augmented reality to facilitate in-situ support for automotive spot welding inspection. In: 10th International Conference on Virtual Reality Continuum and Its Applications in Industry, pp. 195–200. ACM (2011)Google Scholar
  11. 11.
    Lin, F., Ye, L., Duffy, V.G., Su, C.J.: Developing virtual environments for industrial training. Inf. Sci. 140, 153–170 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Stadtler, A., Wiedenmaier, S.: Augmented reality applications for effective manufacturing and service. In: WWDU, pp. 393–395 (2002)Google Scholar
  13. 13.
    Landau, K.: The development of driver assistance systems following usability criteria. Behav. Inf. Technol. 21(5), 341–344 (2002)CrossRefGoogle Scholar
  14. 14.
    Röcker, C.: User-centered design of intelligent environments: requirements for designing successful ambient assisted living systems. In: Central European Conference of Information and Intelligent Systems (CECIIS’13), pp. 4–11. Varazdin, Croatia (2013)Google Scholar
  15. 15.
    Ziefle, M., Röcker, C. (eds.): Human-Centered Design of E-Health Technologies: Concepts. Methods Applications. IGI Publishing, Niagara Falls (2009)Google Scholar
  16. 16.
    Holzinger, A., Ziefle, M., Röcker, C.: Human-computer interaction and usability engineering for elderly (HCI4AGING): introduction to the special thematic session. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) Computers Helping People with Special Needs, Part II, LNCS, vol. 6180, pp. 556–559. Springer, Heidelberg (2010)Google Scholar
  17. 17.
    Ziefle, M., Röcker, C.: Acceptance of pervasive healthcare systems: a comparison of different implementation concepts. In: 4th International ICST Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth’10), CD-ROM. Munich, Germany (2010)Google Scholar
  18. 18.
    Edelmann, M., Malzkorn-Edling, S., Rottenkolber, B., Schreiber, W., Alt, T.: Ergonomics of head mounted displays and studies about effects on eye physiology and well-being. In: 6th International Scientific Conference on Work With Display Units WWDU, pp. 382–383 (2002)Google Scholar
  19. 19.
    Reuss, E., Menozzi, M.: AR for mobile healthcare information systems: do display units take human factors into consideration? In: WWDU 2002 World Wide Work, pp. 22–25 (2002)Google Scholar
  20. 20.
    Magerkurth, C., Engelke, T., Röcker, C.: The smart dice cup: a radio controlled sentient interaction device. In: Harper, R., Rauterberg, M., Combetto, M. (eds.) Proceedings of the Fifth International Conference on Entertainment Computing (ICEC’06), Cambridge, United Kingdom. LNCS, vol. 4161/2006, Springer, Heidelberg, pp. 211–216, 20–22 Sept 2006Google Scholar
  21. 21.
    Kasugai, K., Röcker, C.: Computer-mediated human architecture interaction. In: O’Grady, M.J., Vahdat-Nejad, H., Wolf, K.H., Dragone, M., Ye, J., Röcker, C., O’Hare, G. (eds.) Evolving Ambient Intelligence, CCIS 413, Springer International Publishing, Switzerland, pp. 213–216 (2013)Google Scholar
  22. 22.
    Röcker, C., Kasugai, K.: Interactive architecture in domestic spaces. In: Wichert, R., van Laerhoven, K., Gelissen, J. (eds.) Constructing Ambient Intelligence. Communications in Computer and Information Science Series, vol. 277, pp. 12–18. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Heidrich, F., Kasugai, K., Röcker, C., Russell, P., Ziefle, M.: RoomXT: advanced video communication for joint dining over a distance. In: Proceedings of the 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth’12). IEEE Press, pp. 211–214 (2012)Google Scholar
  24. 24.
    Kasugai, K., Heidrich, F., Röcker, C., Russell, P., Ziefle, M.: Perspective views in video communication systems: an analysis of fundamental user requirements. In: Proceedings of the International Symposium on Pervasive Displays (PerDis’12), Porto, Portugal, ACM Press, article no. 13, 6, 4–5 June 2012Google Scholar
  25. 25.
    Kasugai, K., Ziefle, M., Röcker, C., Russell, P.: Creating spatio-temporal contiguities between real and virtual rooms in an assistive living environment. In: Bonner, J., Smyth, M., O’Neill, S., Mival, O. (eds.): Proceedings of Create’10—Innovative Interactions, Elms Court, Loughborough, UK, pp. 62–67 (2010)Google Scholar
  26. 26.
    Korn, O., Funk, M., Schmidt, A.: Design approaches for the gamification of production environments. A study focusing on acceptance. In: 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments, p. 6. ACM (2015)Google Scholar
  27. 27.
    Röcker, C., Etter, R.: Social radio—a music-based approach to emotional awareness mediation. In: Proceedings of the International Conferences on Intelligent User Interfaces (IUI’07), ACM Press, New York, NY, USA, pp. 286–289 (2007)Google Scholar
  28. 28.
    Gorecky, D., Campos, R., Chakravarthy, H., Dabelow, R., Schlick, J., Zühlke, D.: Mastering mass customization—a concept for advanced, human-centered assembly. Acad. J. Manuf. Eng. 11(2), 62–67 (2013)Google Scholar
  29. 29.
    Röcker, C.: Universal access to awareness information: using smart artefacts to mediate awareness in distributed teams. Univ. Access Inf. Soci. 11(3), 259–271 (2012)Google Scholar
  30. 30.
    Heidrich, F., Ziefle, M., Röcker, C., Borchers, J.: Interacting with smart walls: a multi-dimensional analysis of input technologies for augmented environments. In: Proceedings of the ACM Augmented Human Conference (AH’11), Tokyo, Japan, CD-ROM, 12–14 Mar 2011)Google Scholar
  31. 31.
    Etter, R., Röcker, C.: A tangible user interface for multi-user interaction. In: Ullmer, B., Schmidt, A. (eds.) Proceedings of the International Conference on Tangible and Embedded Interaction (TEI’07), Baton Rouge, Louisiana, ACM Press, pp. 11–12, 15–17 Feb 2007Google Scholar
  32. 32.
    Streitz, N.A., Röcker, C., Prante, T., van Alphen, D., Stenzel, R., Magerkurth, C.: Designing smart artifacts for smart environments. IEEE Comput. 38(3), 41–49 (2005)CrossRefGoogle Scholar
  33. 33.
    Funk, M., Korn, O., Schmidt, A.: An augmented workplace for enabling user-defined tangibles. In: CHI’14 Extended Abstracts on Human Factors in Computing Systems, pp. 1285–1290. ACM (2014)Google Scholar
  34. 34.
    Ukita, N., Eimon, K., Röcker, C.: Mining crucial features for automatic rehabilitation coaching systems: In: I8th International Conference on Pervasive Computing Technologies for Healthcare, pp. 223–226. Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (ICST), Brussels, Belgium (2014)Google Scholar
  35. 35.
    Ukita, N., Kaulen, D., Röcker, C.: A user-centered design approach to physical motion coaching systems for pervasive health. In: Holzinger, A., Röcker, C., Ziefle, M. (eds.) Smart Health: Open Problems and Future Challenges, pp. 189–208. Springer, Heidelberg (2015)Google Scholar
  36. 36.
    Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimedia 19(2), 4–10 (2012)CrossRefGoogle Scholar
  37. 37.
    Röcker, C., Magerkurth, C., Hinske, S., Lampe, M.: Designing user-friendly interfaces for pervasive gaming applications. In: Magerkurth, C., Röcker, C. (eds.) Pervasive Gaming Applications: A Reader for Pervasive Gaming Research, vol. 2, pp. 67–83. Shaker, Aachen (2007)Google Scholar
  38. 38.
    Hinske, S., Lampe, M., Magerkurth, C., Röcker, C.: Classifying pervasive games: on pervasive computing and mixed reality. In: Magerkurth, C., Röcker, C. (eds.) Concepts and Technologies for Pervasive Games: A Reader for Pervasive Gaming Research, vol. 1, pp. 11–37. Shaker Verlag, Aachen (2007)Google Scholar
  39. 39.
    Magerkurth, C., Röcker, C. (eds.): Concepts and Technologies for Pervasive Games: A Reader for Pervasive Gaming Research, vol. 1. Shaker, Aachen (2007)zbMATHGoogle Scholar
  40. 40.
    Magerkurth, C., Röcker, C. (eds.): Pervasive Gaming Applications: A Reader for Pervasive Gaming Research, vol. 2. Shaker, Aachen (2007)zbMATHGoogle Scholar
  41. 41.
    Rodriguez, L., Quint, F., Gorecky, D., Romero, D., Siller, H.R.: Developing a mixed reality assistance system based on projection mapping technology for manual operations at assembly workstations. Procedia Comput. Sci. 75, 327–333 (2015)CrossRefGoogle Scholar
  42. 42.
    Rötting, M.: Assisting the driver? Display systems in cars and trucks. In: 6th International Scientific Conference on Work with Display Units WWDU, pp. 22–25 (2002)Google Scholar
  43. 43.
    Sheridan, T.B., Parasuraman, R.: Human-automation interaction. Rev. Hum. Factors Ergon. 1(1), 89–129 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.National University of Singapore, University Scholars ProgrammeSingaporeSingapore

Personalised recommendations