Model-Based Evaluation of Cooperative Assembly Processes in Human-Robot Collaboration

  • Marco Faber
  • Sinem Kuz
  • Alexander Mertens
  • Christopher M. Schlick
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 490)


The increasing variety in product range demand high flexibility of the production technologies and assembly systems of producing companies. Integrating the human into the assembly process by establishing collaboration between the human and robotized assembly systems seems to be a promising approach to achieve this flexibility even for very small lot sizes. This paper presents a model for assessing the ergonomic risk in such collaboration scenarios. Criteria for assigning assembly steps to the human or the robot are introduced as well as for describing the physical and cognitive ergonomic risk of an individual assembly step. The presented risk model is finally applied to the process of assembly sequence planning, in order to find the optimal assembly sequence in situations of human-robot collaboration.


Human-robot collaboration Ergonomic work conditions Risk modeling 



The authors would like to thank the German Research Foundation DFG for the kind support within the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”.


  1. 1.
    Bannat, A., Bautze, T., Beetz, M., Blume, J., Diepold, K., Ertelt, C., Geiger, F., Gmeiner, T., Gyger, T., Knoll, A., Lau, C., Lenz, C., Ostgathe, M., Reinhart, G., Roesel, W., Ruehr, T., Schuboe, A., Shea, K., Stork Genannt Wersborg, I., Stork, S., Tekouo, W., Wallhoff, F., Wiesbeck, M., Zaeh, M.F.: Artificial cognition in production systems. IEEE Trans. Autom. Sci. Eng. 8, 148–174 (2011)Google Scholar
  2. 2.
    Bley, H., Reinhart, G., Seliger, G., Bernardi, M., Korne, T.: Appropriate human involvement in assembly and disassembly. CIRP Ann. Manuf. Technol. 53(2), 487–509 (2004)CrossRefGoogle Scholar
  3. 3.
    Ogorodnikova, O.: A fuzzy theory in the risk assessment and reduction algorithms for a human centered robotics. In: The 18th IEEE International Symposium on Robot and Human Interactive Communication, pp. 340–345. IEEE Press, New York (2009)Google Scholar
  4. 4.
    Michalos, G., Makris, S., Tsarouchi, P., Guasch, T., Kontovrakis, D., Chryssolouris, G.: Design considerations for safe human-robot collaborative workplaces. Procedia CIRP 37, 248–253 (2015)CrossRefGoogle Scholar
  5. 5.
    Ogorodnikova, O.: Human weaknesses and strengths in collaboration. Mech. Eng. 52, 25–33 (2008)Google Scholar
  6. 6.
    Green, S.A., Billinghurst, M., Chen, X., Chase, J.G.: Human-robot collaboration: a literature review and augmented reality approach in design. Int. J. Adv. Rob. Syst. 5, 1–18 (2008)Google Scholar
  7. 7.
    Bützler, J., Kuz, S., Petruck, H., Faber, M., Schlick, C.M.: Function allocation between humans and systems in self-optimizing production networks. Procedia Manuf. 3, 371–378 (2015)CrossRefGoogle Scholar
  8. 8.
    Lasota, P.A., Rossano, G.F., Shah, J.A.: Toward safe close-proximity human-robot interaction with standard industrial robots. In: 2014 IEEE International Conference on Automation Science and Engineering (CASE), pp. 339–344 (2014)Google Scholar
  9. 9.
    Billings, D.R., Schaefer, K.E., Chen, J.Y.C., Hancock, P.A.: Human-robot interaction: developing trust in robots. In: Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, pp. 109–110. ACM, New York, USA (2012)Google Scholar
  10. 10.
    Rahimi, M., Karwowski, W.: A research paradigm in human-robot interaction. Int. J. Ind. Ergon. 5, 59–71 (1990)CrossRefGoogle Scholar
  11. 11.
    Krüger, J., Lien, T.K., Verl, A.: Cooperation of human and machines in assembly lines. CIRP Ann. Manuf. Technol. 58(2), 628–646 (2009)CrossRefGoogle Scholar
  12. 12.
    Zaeh, M., Roesel, W.: Safety aspects in a human-robot interaction scenario: a human worker is co-operating with an industrial robot. In: Progress in Robotics, pp. 53–62. Springer, Berlin (2009)Google Scholar
  13. 13.
    Faber, M., Mayer, M.P., Schlick, C.M.: Requirements for modeling the human operator in socio-technical production systems. Key Eng. Mater. 613, 453–460 (2014)CrossRefGoogle Scholar
  14. 14.
    Permin, E., Bertelsmeier, F., Blum, M., Bützler, J., Haag, S., Kuz, S., Özdemir, D., Stemmler, S., Thombansen, U., Schmitt, R., Brecher, C., Schlick, C., Abel, D., Poprawe, R., Loosen, P., Schulz, W., Schuh, G.: Self-optimizing production systems. Procedia CIRP 41, 417–422 (2015)CrossRefGoogle Scholar
  15. 15.
    Mayer, M.P., Odenthal, B., Faber, M., Winkelholz, C., Schlick, C.M.: Cognitive engineering of automated assembly processes. Human Factors Ergon. Manuf. Service Ind. 24(3), 348–368 (2012)CrossRefGoogle Scholar
  16. 16.
    Kuz, S., Bützler, J., Schlick, C.M.: Anthropomorphic design of robotic arm trajectories in assembly cells. Occup. Ergon. 14, 73–82 (2015)CrossRefGoogle Scholar
  17. 17.
    Petruck, H., Kuz, S., Mertens, A., Schlick, C.M.: Increasing safety in human-robot collaboration by using anthropomorphic speed profiles of robot movements. In: Proceedings of the 7th International Conference on Applied Human Factors and Ergonomics AHFE 2016 (2016)Google Scholar
  18. 18.
    Faber, M., Petruck, H., Kuz, S., Bützler, J., Mayer, M.P., Schlick, C.M.: Flexible and adaptive planning for human-robot interaction in self-optimizing assembly cells. In: Advances in the Ergonomics in Manufacturing: Managing the Enterprise of the Future, pp. 273–283. AHFE Conference (2014)Google Scholar
  19. 19.
    Cormen, T.H., Leiserson, C.E., Rivest, R., Stein, C.: Introduction to Algorithms. MIT press (2009)Google Scholar
  20. 20.
    Liu, G., Ramakrishnan, K.G.: A*Prune: an algorithm for finding K shortest paths subject to multiple constraints. In: Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies, pp. 743–749 (2001)Google Scholar
  21. 21.
    Schlick, C.M., Faber, M., Kuz, S., Bützler, J.: A symbolic approach to self-optimisation in production system analysis and control. In: Advances in Production Technology, pp. 147–160. Springer, Berlin (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marco Faber
    • 1
  • Sinem Kuz
    • 1
  • Alexander Mertens
    • 1
  • Christopher M. Schlick
    • 1
  1. 1.Institute of Industrial Engineering and Ergonomics of RWTHAachen UniversityAachenGermany

Personalised recommendations