Transcranial Direct Current Stimulation (tDCS) Versus Caffeine to Sustain Wakefulness at Night When Dosing at Start-of-Shift

  • Lindsey McIntireEmail author
  • R. Andy McKinley
  • Justin Nelson
  • Chuck Goodyear
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 488)


Shift work is necessary in many industries such as healthcare, trucking, defense, and aviation. It is well documented that during the night shift, workers experience the lowest levels of performance and alertness (Czeisler et al. in Science 210:1264–1267, 1980; Akerstedt and Gillberg in Sleep 4:159–169, 1981 [1, 2]). Research has shown caffeine can enhance alertness and performance during overnight work (Muehlbach and Walsh in Sleep 18(1):22–29, 1995 [4]). However, benefits of caffeine decline over time (Miller et al. in Fatigue and its Effect on Performance in Military Environments (Report No. 0704–0188), 2007 [5]). McIntire et al. (Brain Stimul. 7(4):499–507, 2014 [6]) found a promising alternative for use during sleep deprivation called transcranial direct current stimulation (tDCS). tDCS sustained performance throughout the sleep deprivation vigil and for a longer amount of time when compared to caffeine. Three groups of participants received either active tDCS and placebo gum at the start of their shift (1800), caffeine gum with sham tDCS, or sham tDCS with placebo gum. Participants completed 13 sessions of tasks and questionnaires while remaining awake for 36 h. Our results show tDCS could be a possible fatigue countermeasure.


Fatigue Sleep-deprivation Transcranial direct current stimulation Caffeine Shift work 


  1. 1.
    Czeisler, C.A., Weitzman, E.D., Moore-Ede, M.C., Zimmerman, J.C., Knauer, R.S.: Human sleep: its duration and organization depend on its circadian phase. Science 210, 1264–1267 (1980)CrossRefGoogle Scholar
  2. 2.
    Akerstedt, T., Gillberg, M.: The circadian variation of experimentally displaced sleep. Sleep 4, 159–169 (1981)Google Scholar
  3. 3.
    Frӧber, J.E., Karlsson, C.G., Levi, L., Lidberg, L.: Psychobiological circadian rhythms during a 72-Hour Vigil. Fӧrsvarsmedicin. II, 192–201 (1975)Google Scholar
  4. 4.
    Muehlbach, M.J., Walsh, J.K.: The effects of caffeine on simulated night-shift work and subsequent daytime sleep. Sleep 18(1), 22–29 (1995)Google Scholar
  5. 5.
    Miller, N.L., Matsangas, P., Shattuck, L.G.: Fatigue and its Effect on Performance in Military Environments (Report No. 0704–0188). Naval Postgraduate School Operations Research Department, Monterey (2007)Google Scholar
  6. 6.
    McIntire, L.K., McKinley, R.A., Nelson, J.M., Goodyear, C.: A comparison of the effects of transcranial direct current stimulation and caffeine on vigilance and cognitive performance during extended wakefulness. Brain Stimul. 7(4), 499–507 (2014)CrossRefGoogle Scholar
  7. 7.
    McLellan, T.M., Kamimori, G.H., Voss, D.M., Bell, D.G., Cole, K.G., Johnson, D.: Caffeine maintains vigilance and improves run times during night operations for special forces. Aviat. Space Environ. Med. 76, 647–654 (2005)Google Scholar
  8. 8.
    Tharion, W.J., Shukitt-Hale, B., Lieberman, H.R.: Caffeine effects on marksmanship during high-stress military training with 72 hour sleep deprivation. Aviat. Space Environ. Med. 74(4), 309–314 (2003)Google Scholar
  9. 9.
    Kilgore, W.D.S., Balkin, T.J., Wesensten, N.J.: Impaired decision making following 49 h of sleep deprivation. J. Sleep Res. 15(1), 7–13 (2006)CrossRefGoogle Scholar
  10. 10.
    Nitsche, M.A., Boggio, P.S., Fregni, F., Pascual-Leone, A.: Treatment of depression with transcranil direct current stimulation (tDCS): a review. Exp. Neurol. 219, 14–19 (2009)CrossRefGoogle Scholar
  11. 11.
    McKinley, R.A., Nelson, J., Bridges, N., Walters, C.: Modulating the brain at work using noninvasive transcranial stimulation. NeuroImage 59(1), 129–137 (2012)CrossRefGoogle Scholar
  12. 12.
    McKinley, R.A., Weisend, M.P., McIntire, L.K., Bridges, N., Walters, C.: Acceleration of image analyst training with transcranial direct current stimulation. Behav. Neurosci. 127(6), 936–946 (2013)CrossRefGoogle Scholar
  13. 13.
    Kilpeläinen, A.A., Huttunen, K.H., Lohi, J.J., Lyytinen, H.: Effect of caffeine on vigilance and cognitive performance during extended wakefulnes. Int J Aviat Psychol. 20(2), 144–159 (2010)CrossRefGoogle Scholar
  14. 14.
    Teikari, V.: Vigilanssi-ilmiön Mittaamisesta Ja Selitysmahdollisuuksista [On Measurement And Explanation Of Vigilance] (Jyväskylä Studies In Education, Psychology And Social Research No. 35). University of Jyväskylä, Jyväskylä (1977)Google Scholar
  15. 15.
    Davies, D.R., Parasuraman, R.: The Psychology of Vigilance. Academic Press, London (1982)Google Scholar
  16. 16.
    Parasuraman, R. (ed.): The Attentive Brain. The MIT Press, Cambridge (1998)Google Scholar
  17. 17.
    Warm, J.S., Parasuraman, R., Matthews, G.: Vigilance requires hard mental work and is stressful. Hum. Factors 50, 433–441 (2008)CrossRefGoogle Scholar
  18. 18.
    Mackworth, J.F.: Performance decrement in vigilance, threshold, and high-speed perceptual motor tasks. Can. J. Psychol. 18, 209–223 (1964)CrossRefGoogle Scholar
  19. 19.
    Frankmann, J.P., Adams, J.A.: Theories of vigilance. Psychol. Bull. 59, 257–272 (1962)CrossRefGoogle Scholar
  20. 20.
    Parasuraman, R.: Sustained attention: a multifactorial approach. In: Posner, M.I., Marin, O.S. (eds.) Attention and Performance XI, pp. 493–511. Erlbaum Associates, New Jersey (1985)Google Scholar
  21. 21.
    Nelson, J.T., McKinley, R.A., Golob, E.J., Warm, J.S., Parasuramen, R.: Modulating the prefrontal cortex during sustained attention with transcranial direct current stimulation. NeuroImage 85, 909–917 (2014)CrossRefGoogle Scholar
  22. 22.
    Nelson, J.M., McKinley, R.A., McIntire, L.K., Goodyear, C., Walters, C.: Augmenting visual search performance with transcranial direct current stimulation. Mil. Psychol. 27(6), 335–347 (2015)CrossRefGoogle Scholar
  23. 23.
    Posner, M.I.: Chronometric Explorations of Mind. Erlbaum, Hillsdale, NJ (1978)Google Scholar
  24. 24.
    Boros, K., Poreisz, C., Munchau, A., Paulus, W., Nitsche, M.A.: Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans. Eur. J. Neurosci. 27(5), 1292–1300 (2008)CrossRefGoogle Scholar
  25. 25.
    Antal, A., Nitsche, M.A., Kruse, W., Kincses, T.Z., Hoffmann, K., Paulus, W.: Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. Eur. J. Neurosci. 19, 2888–2892 (2004)CrossRefGoogle Scholar
  26. 26.
    Flöel, A., Rösser, N., Michka, O., Knecht, S., Breitenstein, C.: Noninvasive brain stimulation improves language learning. J. Cogn. Neurosci. 20(8), 1415–1422 (2008)CrossRefGoogle Scholar
  27. 27.
    Nitsche, M.A., Roth, A., Kuo, M.F., Fischer, A.K., Liebetanz, D., Lang, N., Tergau, F., Paulus, W.: Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex. J. Neurosci. 27(14), 3807–3812 (2007)CrossRefGoogle Scholar
  28. 28.
    Kahneman, D.: Attention and Effort. Prentice Hall, Englewood Cliffs, NJ (1973)Google Scholar
  29. 29.
    Matthews, G., Davies, D.R., Westerman, S.J., Stammers, R.B.: Vigilance And Sustained Attention. Human Performance: Cognition, Stress, and Individual Differences. Psychology Press, Philadelphia, PA, pp. 107–124 (2000)Google Scholar
  30. 30.
    Wickens, C.D.: Processing resources in attention. In: Parasuraman, R., Davies, D.R. (eds.) Varieties of Attention, pp. 63–102. Academic Press, Orlando (1984)Google Scholar
  31. 31.
    Merzagora, A.C., Foffani, G., Panyavin, L., Mordillo-Mateos, L., Aguilar, J., Onaral, B., Oliviero, A.: Prefrontal hemodynamic changes produced by anodal direct current stimulation. NeuroImage 49(3), 2304–2310 (2010)CrossRefGoogle Scholar
  32. 32.
    Falcone, B., Coffman, B.A., Clark, V.P. Parasuraman, R.: Transcranial direct current stimulation augments perceptual sensitivity and 24-hour retention in a complex threat detection task. PLoS One (2012)Google Scholar
  33. 33.
    Dorrian, J., Rogers, N.L., Dinges, D.F.: Psychomotor Vigilance Performance: Neurocognitve Assay Sensitive to Sleep Loss. Marcel Dekker, New York (2004)CrossRefGoogle Scholar
  34. 34.
    Lamond, N., Dawson, D., Roach, G.D.: Fatigue assessment in the field: validation of a hand-held electronic psychomotor vigilance task. Aviat. Space Environ. Med. 76, 486–489 (2005)Google Scholar
  35. 35.
    Lim, J., Dinges, D.F.: Sleep deprivation and vigilant attention. Ann. NY Acad. Sci. 1129, 305–322 (2008)CrossRefGoogle Scholar
  36. 36.
    Nelson, J., McKinley, R.A., Phillips, C., McIntire, L., Goodyear, C., Camden, A., Monforton, L.: the effects of noninvasive brains stimulation on multitasking throughput capacity. IEEE Trans. Hum. Mach. Syst. (Submitted)Google Scholar
  37. 37.
    Fregni, F., Boggio, P.S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., Marcolin, M.A., Rigonatti, S.P., Silva, M.T.A., Paulus, W., Pascual-Leone, A.: Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain Res. 166, 23–30 (2005)CrossRefGoogle Scholar
  38. 38.
    Kincses, T.Z., Antal, A., Nitsche, M.A., Bártfai, O., Paulus, W.: Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia 42(1), 113–117 (2004)CrossRefGoogle Scholar
  39. 39.
    Pilcher, J.J., Huffcutt, A.J.: Effects of sleep deprivation on performance: a meta-analysis. J. Sleep Res. Sleep Med. 19(4), 318–326 (1996)Google Scholar
  40. 40.
    Lieberman, H.R., Tharion, W.J., Shukitt-Hale, B., Speckman, K.L., Tulley, R: Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. navy SEAL training. Psychophar. 164, 250–261 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Lindsey McIntire
    • 1
    Email author
  • R. Andy McKinley
    • 2
  • Justin Nelson
    • 1
  • Chuck Goodyear
    • 1
  1. 1.Infoscitex, Inc.DaytonUSA
  2. 2.711th HPW/RHCP, Wright-Patterson Air Force BaseDaytonUSA

Personalised recommendations