Identity Verification Using a Kinematic Memory Detection Technique

  • Merylin Monaro
  • Luciano Gamberini
  • Giuseppe Sartori
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 488)


We present a new method that allows the identification of false self-declared identity, based on indirect measures of the memories relating the affirmed personal details. This method exploits kinematic analysis of mouse as implicit measure of deception, while the user is answering to personal information. Results show that using mouse movement analysis, it is possible to reach a high rate of accuracy in detecting the veracity of self-declared identities. In fact, we obtained an average accuracy of 88 % in the classification of single answers as truthful or untruthful, that corresponds overall to 9.7/10 participants correctly classified as true tellers or liars. The advantage of this method is that it does not requires any knowledge about the real identity of the declarant.


Identity verification Lie detection Memory detection 


  1. 1.
  2. 2.
    Walczyk, J.J., Igou, F.P., Dixon, A.P., Tcholakian, T.: Advancing lie detection by inducing cognitive load on liars: a review of relevant theories and techniques guided by lessons from polygraph-based approaches. Front. Psychol. 4, 14 (2013)CrossRefGoogle Scholar
  3. 3.
    Sartori, G., Agosta, S., Zogmaister, C., Ferrara, S.D., Castiello, U.: How to accuratly detect autobiographical events. Psychol. Sci. 19(8), 772–780 (2008)CrossRefGoogle Scholar
  4. 4.
    Verschuere, B., Ben-Shakhar, G., Meijer, E.: Memory Detection: Theory and Application of the Concealed Information Test. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  5. 5.
    Verschuere, B., Kleinberg, B.: ID-check: online concealed information test reveals true identity. J. Forensic Sci. 61 (2015)Google Scholar
  6. 6.
    Ganis, G., Keenan, J.P.: The cognitive neuroscience of deception. Soc. Neurosci. 4(6), 465–472 (2009)CrossRefGoogle Scholar
  7. 7.
    Freeman, J.B., Dale, R., Farmer, T.A.: Hand in motion reveals mind in motion. Front. Psychol. 2, 59 (2011)CrossRefGoogle Scholar
  8. 8.
    Calcagni, A., Lombardi, L.: Dynamic fuzzy rating tracker (DYFRAT): a novel methodology formodeling real-time dynamic cognitive processes in rating scales. Appl. Soft Comput. 24, 948–961 (2014)CrossRefGoogle Scholar
  9. 9.
    Song, J.-H., Nakayama, K.: Hidden cognitive states revealed in choice reaching tasks. Trends Cogn. Sci. 13(8), 360–366 (2009)CrossRefGoogle Scholar
  10. 10.
    McKinstry, C., Dale, R., Spivey, M.J.: Action dynamics reveal parallel competition in decision making. Psychol. Sci. 19(1), 22–24 (2008)CrossRefGoogle Scholar
  11. 11.
    Vrij, A.: Deception Detection: Current Challenges and New Approaches. Wiley, Oxford (2014)Google Scholar
  12. 12.
    Duran, N.D., Dale, R., McNamara, D.S.: The action dynamics of overcoming the truth. Psychon. Bull. Rev. 17(4), 486–491 (2010)CrossRefGoogle Scholar
  13. 13.
    Hibbeln, M., Jenkins, J., Schneider, C., Valacich, J., Weinmann, M.: Investigating the effect of fraud on mouse usage in human-computer interactions. In: International Conference on Information Systems (2014)Google Scholar
  14. 14.
    Valacich, J.S., Jenkins, J.L., Nunamaker, Jr., J.F., Hariri, S., Howie, J.: Identifying insider threats through monitoring mouse movements in concealed information tests. In: Hawaii International Conference on System Sciences. Deception Detection Symposium (2013)Google Scholar
  15. 15.
    Jorgensen, Z., Yu, T.: On mouse dynamics as a behavioral biometric for authentication. In: ASIACCS ’11 Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security, pp. 476–482 (2001)Google Scholar
  16. 16.
    Freeman, J.B., Ambady, N.: MouseTracker: software for studying real-time mental processing using a computer mouse-tracking method. Behav. Res. Methods 42, 226–241 (2010)CrossRefGoogle Scholar
  17. 17.
    Vrij, A., Leal, S., Granhag, P.A., Mann, S., Fisher, R.P., Hillman, J., Sperry, K.: Outsmarting the liars: the benefit of asking unanticipated questions. Law Hum. Behav. 33(2), 159–166 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Merylin Monaro
    • 1
  • Luciano Gamberini
    • 1
  • Giuseppe Sartori
    • 1
  1. 1.University of Padova, Human Inspired Technolgy Research CentrePaduaItaly

Personalised recommendations