Advertisement

QZTool—Automatically Generated Origin-Destination Matrices from Cell Phone Trajectories

  • Christopher Horn
  • Heimo Gursch
  • Roman Kern
  • Michael Cik
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 484)

Abstract

Models describing human travel patterns are indispensable to plan and operate road, rail and public transportation networks. For most kind of analyses in the field of transportation planning, there is a need for origin-destination (OD) matrices, which specify the travel demands between the origin and destination zones in the network. The preparation of OD matrices is traditionally a time consuming and cumbersome task. The presented system, QZTool, reduces the necessary effort as it is capable of generating OD matrices automatically. These matrices are produced starting from floating phone data (FPD) as raw input. This raw input is processed by a Hadoop-based big data system. A graphical user interface allows for an easy usage and hides the complexity from the operator. For evaluation, we compare a FDP-based OD matrix to an OD matrix created by a traffic demand model. Results show that both matrices agree to a high degree, indicating that FPD-based OD matrices can be used to create new, or to validate or amend existing OD matrices.

Keywords

Transportation planning Travel demand Origin-destination (OD) matrices Floating phone data (FPD) Big data Hadoop 

Notes

Acknowledgments

The Know-Center is funded within the Austrian COMET Program—Competence Centers for Excellent Technologies—under the auspices of the Austrian Federal Ministry of Transport, Innovation and Technology, the Austrian Federal Ministry of Economy, Family and Youth and by the State of Styria. COMET is managed by the Austrian Research Promotion Agency FFG.

References

  1. 1.
    Ben-Akiva, M., Lerman, S.: Discrete Choice Analysis. MIT Press, Cambridge (1989)Google Scholar
  2. 2.
    Bera, S., Rao, K.V.K.: Estimation of origin-destination matrix from traffic counts: the state of the art. Eur. Transp./Trasporti Europei. 49, 2–23 (2011)Google Scholar
  3. 3.
    Caceres, N., Wideberg, J.P., Benitez, F.G.: Review of traffic data estimations extracted from cellular networks. IET Intel. Transport Syst. 2(3), 179–192 (2008)CrossRefGoogle Scholar
  4. 4.
    Steenbruggen, J., Borzacchiello, M.T., Nijkamp, P., Scholten, H.: Mobile phone data from GSM networks for traffic parameter and urban spatial pattern assessment: a review of applications and opportunities. GeoJournal 78(2), 223–243 (2011)CrossRefGoogle Scholar
  5. 5.
    Aydos, C., Hengst, B., Uther, W.: Kalman Filter Process Models for Urban Vehicle Tracking. In: 12th International IEEE Conference on Intelligent Transportation Systems (ITSC ‘09), pp. 1–8. IEEE Press, New York (2009)Google Scholar
  6. 6.
    Caceres, N., Romero, L.M., Benitez, F.G., del Castillo, J.M.: Traffic flow estimation models using cellular phone data. IEEE Trans. Intell. Transp. Syst. 13(3), 1430–1441 (2012)CrossRefGoogle Scholar
  7. 7.
    Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., Ratti, C.: Real-time urban monitoring using cell phones: a case study in Rome. IEEE Trans. Intell. Transp. Syst. 12(1), 141–151 (2011)CrossRefGoogle Scholar
  8. 8.
    Janecek, A., Hummel, K.A., Valerio, D., Ricciato, F., Hlavacs, H.: Cellular data meet vehicular traffic theory: location area updates and cell transitions for travel time estimation. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 361–370. ACM, New York (2012)Google Scholar
  9. 9.
    Caceres, N., Wideberg, J.P., Benitez, F.G.: Deriving origin destination data from a mobile phone network. IET Intel. Transport Syst. 1(1), 15–26 (2007)CrossRefGoogle Scholar
  10. 10.
    Calabrese, F., Di Lorenzo, G., Liu, L., Ratti, C.: Estimating origin-destination flows using mobile phone location data. IEEE Pervasive Comput. 10(4), 36–44 (2011)CrossRefGoogle Scholar
  11. 11.
    Li, B.: Bayesian inference for origin-destination matrices of transport networks using the EM algorithm. Technometrics 47(4), 399–408 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Toledo, T., Kolechkina, T.: Estimation of dynamic origin-destination matrices using linear assignment matrix approximations. IEEE Trans. Intell. Transp. Syst. 14(2), 618–626 (2013)CrossRefGoogle Scholar
  13. 13.
    Iqbal, M.S., Choudhury, C.F., Wang, P., González, M.C.: Development of origin-destination matrices using mobile phone call data. Transp. Res. Part C: Emerg. Technol. 40, 63–74 (2014)CrossRefGoogle Scholar
  14. 14.
    Horn, C., Klampfl, S., Cik., M., Reiter, T.: Detecting outliers in cell phone data: correcting trajectories to improve traffic modelling. Transp Res Rec.: J. Transp. Res. Board (2014)Google Scholar
  15. 15.
    Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for low-sampling-rate GPS trajectories. In: Proceedings of the 17th International Conference on Advances in Geographic Information Systems (SIGSPATIAL), pp. 352–361. ACM, New York (2009)Google Scholar
  16. 16.
    Schulze, G., Horn, C., Kern, R.: Map-matching cell phone trajectories of low spatial and temporal accuracy. In: IEEE 18th International Conference on Intelligent Transportation Systems, pp. 2707–2714. IEEE Press, New York (2015)Google Scholar
  17. 17.
    Stenneth, L., Wolfson, O., Yu, P.S., Xu B.: Transportation mode detection using mobile phones and GIS information. In: Proceedings of the 19th ACM International Conference on Advances in Geographic Information Systems (SIGSPATIAL), pp. 54–63. ACM, New York (2011)Google Scholar
  18. 18.
    Wang, H., Calabrese, F., Di Lorenzo, G., Ratti C.: Transportation Mode Inference from Anonymized and Aggregated Mobile Phone Call Detail Records. In: 13th International IEEE Conference on Intelligent Transportation Systems, pp. 318–323. IEEE Press, New York (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Christopher Horn
    • 1
  • Heimo Gursch
    • 1
  • Roman Kern
    • 1
  • Michael Cik
    • 2
  1. 1.Know-Center GmbH, Knowledge DiscoveryGrazAustria
  2. 2.Institute of Highway Engineering and Transport Planning, Graz University of TechnologyGrazAustria

Personalised recommendations