Skip to main content

Abstract

We propose the construction of a class of L 2 stable quasi-interpolation operators onto the space of splines on tensor-product meshes, in any space dimension. The estimate we propose is robust with respect to knot repetition and to knot “vicinity” (up to p + 1 knots), so it applies to the most general scenario in which the B-spline functions are known to be well defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This constant depends on the polynomial degree p, since the number of B-spline basis functions acting on a single mesh element is p + 1.

  2. 2.

    For each Q we consider the representation Q = I 1 × × I d .

  3. 3.

    Without loss of generality, we denote by C 2 the constant in Remark 1 for each coordinate direction, and thus, \(\frac{\vert \tilde{Q}\vert } {\vert \mathop{\mathrm{supp}}\nolimits \beta \vert }\leqslant C_{2}^{d}\), for all \(Q \in \mathcal{Q}\) such that Q ⊂ suppβ.

References

  1. Y. Bazilevs, L. Beirão da Veiga, J.A. Cottrell, T.J.R. Hughes, G. Sangalli, Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16, 1031–1090 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Beirão da Veiga, A. Buffa, J. Rivas, G. Sangalli, Some estimates for h-p-k-refinement in isogeometric analysis. Numer. Math. 118, 271–305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Beirão da Veiga, A. Buffa, D. Cho, G. Sangalli, Analysis-suitable T-splines are dual-compatible. Comput. Methods Appl. Mech. Eng. 249/252, 42–51 (2012)

    Google Scholar 

  4. L. Beirão da Veiga, D. Cho, G. Sangalli, Anisotropic NURBS approximation in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 209/212, 1–11 (2012)

    Google Scholar 

  5. L. Beirão da Veiga, A. Buffa, G. Sangalli, R. Vázquez, Analysis-suitable T-splines of arbitrary degree: definition, linear independence and approximation properties. Math. Models Methods Appl. Sci. 23 (2), 1–25 (2013)

    MathSciNet  MATH  Google Scholar 

  6. L. Beirão da Veiga, A. Buffa, G. Sangalli, R.Vázquez, Mathematical analysis of variational isogeometric methods. Acta Numer. 23, 157–287 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Buffa, E.M. Garau, New refinable spaces and local approximation estimates for hierarchical splines. IMA J. Numer Anal. (2016, to appear)

    Google Scholar 

  8. J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA (Wiley, New York, 2009)

    Book  Google Scholar 

  9. C. de Boor, A Practical Guide to Splines, Revised edition. Applied Mathematical Sciences, vol. 27 (Springer, New York, 2001)

    Google Scholar 

  10. C. de Boor, G.J. Fix, Spline approximation by quasi-interpolants. J. Approx. Theory 8, 19–45 (1973)

    Article  MATH  Google Scholar 

  11. J. Evans, Y. Bazilevs, I. Babuska, T. Hughes, N-widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method. Comput. Methods Appl. Mech. Eng. 198, 1726–1741 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Giannelli, B. Jüttler, H. Speleers, Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comput. Math. 40 (2), 459–490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Kraft, Adaptive und linear unabhängige multilevel B-Splines und ihre Anwendungen, Ph.D. thesis, Universität Stuttgart, 1998

    Google Scholar 

  15. B.-G. Lee, T. Lyche, K. Mørken, Some examples of quasi-interpolants constructed from local spline projectors, in Mathematical Methods for Curves and Surfaces (Oslo, 2000). Innov. Appl. Math. (Vanderbilt University Press, Nashville, TN, 2001), pp. 243–252

    Google Scholar 

  16. T. Lyche, L.L. Schumaker, Local spline approximation methods. J. Approx. Theory 15, 294–325 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Prautzsch, W. Boehm, M. Paluszny, Bézier and B-spline Techniques. Mathematics and Visualization (Springer, Berlin, 2002), xiv+304 pp. ISBN: 3-540-43761-4

    Google Scholar 

  18. P. Sablonnière, Recent progress on univariate and multivariate polynomial and spline quasi-interpolants, in Trends and Applications in Constructive Approximation, ed. by M.G. de Brujn, D.H. Mache, J. Szabadoz. ISNM, vol. 151 (Birhäuser Verlag, Basel, 2005), pp. 229–245

    Google Scholar 

  19. L.L. Schumaker, Spline Functions: Basic Theory. Cambridge Mathematical Library, 3rd edn. (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  20. H. Speleers, C. Manni, Effortless quasi-interpolation in hierarchical spaces. Numer. Math. 132 (1), 55–184 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. D.C. Thomas, M.A. Scott, J.A. Evans, K. Tew, E.J. Evans, Bézier projection: a unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis. Comput. Methods Appl. Mech. Eng. 284, 55–105 (2015)

    Article  MathSciNet  Google Scholar 

  22. A.-V. Vuong, C. Giannelli, B. Jüttler, B. Simeon, A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200 (49–52), 3554–3567 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Annalisa Buffa and Giancarlo Sangalli were partially supported by the European Research Council through the FP7 ERC Consolidator Grant n.616563 HIGEOM, and by the Italian MIUR through the PRIN “Metodologie innovative nella modellistica differenziale numerica”. Eduardo M. Garau was partially supported by CONICET through grant PIP 112-2011-0100742, by Universidad Nacional del Litoral through grants CAI+D 500 201101 00029 LI, 501 201101 00476 LI, by Agencia Nacional de Promoción Científica y Tecnológica, through grants PICT-2012-2590 and PICT-2014-2522 (Argentina). Carlotta Giannelli was supported by the project DREAMS (MIUR “Futuro in Ricerca” RBFR13FBI3) and by the Gruppo Nazionale per il Calcolo Scientifico (GNCS) of the Istituto Nazionale di Alta Matematica (INdAM). This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Buffa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buffa, A., Garau, E.M., Giannelli, C., Sangalli, G. (2016). On Quasi-Interpolation Operators in Spline Spaces. In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (eds) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-41640-3_3

Download citation

Publish with us

Policies and ethics