Abstract
We propose the construction of a class of L 2 stable quasi-interpolation operators onto the space of splines on tensor-product meshes, in any space dimension. The estimate we propose is robust with respect to knot repetition and to knot “vicinity” (up to p + 1 knots), so it applies to the most general scenario in which the B-spline functions are known to be well defined.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This constant depends on the polynomial degree p, since the number of B-spline basis functions acting on a single mesh element is p + 1.
- 2.
For each Q we consider the representation Q = I 1 × … × I d .
- 3.
Without loss of generality, we denote by C 2 the constant in Remark 1 for each coordinate direction, and thus, \(\frac{\vert \tilde{Q}\vert } {\vert \mathop{\mathrm{supp}}\nolimits \beta \vert }\leqslant C_{2}^{d}\), for all \(Q \in \mathcal{Q}\) such that Q ⊂ suppβ.
References
Y. Bazilevs, L. Beirão da Veiga, J.A. Cottrell, T.J.R. Hughes, G. Sangalli, Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16, 1031–1090 (2006)
L. Beirão da Veiga, A. Buffa, J. Rivas, G. Sangalli, Some estimates for h-p-k-refinement in isogeometric analysis. Numer. Math. 118, 271–305 (2011)
L. Beirão da Veiga, A. Buffa, D. Cho, G. Sangalli, Analysis-suitable T-splines are dual-compatible. Comput. Methods Appl. Mech. Eng. 249/252, 42–51 (2012)
L. Beirão da Veiga, D. Cho, G. Sangalli, Anisotropic NURBS approximation in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 209/212, 1–11 (2012)
L. Beirão da Veiga, A. Buffa, G. Sangalli, R. Vázquez, Analysis-suitable T-splines of arbitrary degree: definition, linear independence and approximation properties. Math. Models Methods Appl. Sci. 23 (2), 1–25 (2013)
L. Beirão da Veiga, A. Buffa, G. Sangalli, R.Vázquez, Mathematical analysis of variational isogeometric methods. Acta Numer. 23, 157–287 (2014)
A. Buffa, E.M. Garau, New refinable spaces and local approximation estimates for hierarchical splines. IMA J. Numer Anal. (2016, to appear)
J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA (Wiley, New York, 2009)
C. de Boor, A Practical Guide to Splines, Revised edition. Applied Mathematical Sciences, vol. 27 (Springer, New York, 2001)
C. de Boor, G.J. Fix, Spline approximation by quasi-interpolants. J. Approx. Theory 8, 19–45 (1973)
J. Evans, Y. Bazilevs, I. Babuska, T. Hughes, N-widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method. Comput. Methods Appl. Mech. Eng. 198, 1726–1741 (2009)
C. Giannelli, B. Jüttler, H. Speleers, Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comput. Math. 40 (2), 459–490 (2014)
T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)
R. Kraft, Adaptive und linear unabhängige multilevel B-Splines und ihre Anwendungen, Ph.D. thesis, Universität Stuttgart, 1998
B.-G. Lee, T. Lyche, K. Mørken, Some examples of quasi-interpolants constructed from local spline projectors, in Mathematical Methods for Curves and Surfaces (Oslo, 2000). Innov. Appl. Math. (Vanderbilt University Press, Nashville, TN, 2001), pp. 243–252
T. Lyche, L.L. Schumaker, Local spline approximation methods. J. Approx. Theory 15, 294–325 (1975)
H. Prautzsch, W. Boehm, M. Paluszny, Bézier and B-spline Techniques. Mathematics and Visualization (Springer, Berlin, 2002), xiv+304 pp. ISBN: 3-540-43761-4
P. Sablonnière, Recent progress on univariate and multivariate polynomial and spline quasi-interpolants, in Trends and Applications in Constructive Approximation, ed. by M.G. de Brujn, D.H. Mache, J. Szabadoz. ISNM, vol. 151 (Birhäuser Verlag, Basel, 2005), pp. 229–245
L.L. Schumaker, Spline Functions: Basic Theory. Cambridge Mathematical Library, 3rd edn. (Cambridge University Press, Cambridge, 2007)
H. Speleers, C. Manni, Effortless quasi-interpolation in hierarchical spaces. Numer. Math. 132 (1), 55–184 (2016)
D.C. Thomas, M.A. Scott, J.A. Evans, K. Tew, E.J. Evans, Bézier projection: a unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis. Comput. Methods Appl. Mech. Eng. 284, 55–105 (2015)
A.-V. Vuong, C. Giannelli, B. Jüttler, B. Simeon, A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200 (49–52), 3554–3567 (2011)
Acknowledgements
Annalisa Buffa and Giancarlo Sangalli were partially supported by the European Research Council through the FP7 ERC Consolidator Grant n.616563 HIGEOM, and by the Italian MIUR through the PRIN “Metodologie innovative nella modellistica differenziale numerica”. Eduardo M. Garau was partially supported by CONICET through grant PIP 112-2011-0100742, by Universidad Nacional del Litoral through grants CAI+D 500 201101 00029 LI, 501 201101 00476 LI, by Agencia Nacional de Promoción Científica y Tecnológica, through grants PICT-2012-2590 and PICT-2014-2522 (Argentina). Carlotta Giannelli was supported by the project DREAMS (MIUR “Futuro in Ricerca” RBFR13FBI3) and by the Gruppo Nazionale per il Calcolo Scientifico (GNCS) of the Istituto Nazionale di Alta Matematica (INdAM). This support is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Buffa, A., Garau, E.M., Giannelli, C., Sangalli, G. (2016). On Quasi-Interpolation Operators in Spline Spaces. In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (eds) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-41640-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-41640-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41638-0
Online ISBN: 978-3-319-41640-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)