Skip to main content

Foundations of the MHM Method

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 114))

Abstract

An abstract setting for the construction and analysis of the Multiscale Hybrid-Mixed (MHM for short) method is proposed. We review some of the most recent developments from this standpoint, and establish relationships with the classical lowest-order Raviart-Thomas element and the primal hybrid method, as well as with some recent multiscale methods. We demonstrate the reach of the approach by revisiting the wellposedness and error analysis of the MHM method applied to the Laplace problem. In the process, we devise new theoretical results for this model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Allendes, G.R. Barrenechea, E. Hernandez, F. Valentin, A two-level enriched finite element method for a mixed problem. Math. Comput. 80, 11–41 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Araya, G.R. Barrenechea, L.P. Franca, F. Valentin, Stabilization arising from PGEM: a review and further developments. Appl. Numer. Math. 59, 2065–2081 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Araya, C. Harder, D. Paredes, F. Valentin, Multiscale hybrid-mixed method. SIAM J. Numer. Anal. 51, 3505–3531 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Arbogast, K. Boyd, Subgrid upscaling and mixed multiscale finite elements. SIAM J. Numer. Anal. 44, 1150–1171 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Arbogast, H. Xiao, A multiscale mortar mixed space based on homogenization for heterogeneous elliptic problems. SIAM J. Numer. Anal. 51, 377–399 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Arbogast, G. Pencheva, M.F. Wheeler, I. Yotov, A multiscale mortar mixed finite element method. SIAM Multiscale Model. Simul. 6, 319–346 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Babuška, E. Osborn, Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20, 510–536 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Baiocchi, F. Brezzi, L.P. Franca, Virtual bubbles and Galerkin-Least-Squares type methods (Ga.L.S.). Comput. Methods Appl. Mech. Eng. 105, 125–141 (1993)

    Google Scholar 

  9. G.R. Barrenechea, L.P. Franca, F. Valentin, A symmetric nodal conservative finite element method for the Darcy equation. SIAM J. Numer. Anal. 47, 3652–3677 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15 (Springer, Berlin/New York, 1991)

    Google Scholar 

  11. F. Brezzi, A. Russo, Choosing bubbles for advection-diffusion problems. Math. Models Methods Appl. Sci. 4, 571–587 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Brezzi, M.O. Bristeau, L.P. Franca, M. Mallet, G. Rogé, A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Eng. 96, 117–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Brezzi, L.P. Franca, T.J.R. Hughes, A. Russo, b = ∫ g. Comput. Methods Appl. Mech. Eng. 145, 329–339 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Cappelo, A. Geis, B. Gropp, L. Kale, B. Kramer, M. Sinir, Toward exascale resilience. Int. J. High Perform. Comput. Appl. 23, 374–388 (2009)

    Article  Google Scholar 

  15. B. Chabaud, B. Cockburn, Uniform-in-time superconvergence of hdg methods for the heat equation. Math. Comput. 81, 107–129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Z. Chen, T. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72, 541–576 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Coutinho, L.P. Franca, F. Valentin, Numerical multiscale methods. Int. J. Numer. Meth. Fluids 70, 403–419 (2012)

    Article  MathSciNet  Google Scholar 

  18. L. Demkowicz, J. Gopalakrishnan, Analysis of the dpg method for the Poisson equation. SIAM J. Numer. Anal. 49, 1788–1809 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Demkowicz, J. Gopalakrishnan, A primal dpg method without a first order reformulation. Comput. Math. Appl. 66, 1058–1064 (2013)

    Article  MathSciNet  Google Scholar 

  20. Y. Efendiev, T. Hou, X. Wu, Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal. 37, 888–910 (2000) (electronic)

    Google Scholar 

  21. Y. Efendiev, R. Lazarov, M. Moon, K. Shi, A spectral multiscale hybridizable discontinuous galerkin method for second order elliptic problems. Comput. Meth. Appl. Mech. Eng. 292, 243–256 (2015)

    Article  MathSciNet  Google Scholar 

  22. A. Ern, J.-L. Guermond, Theory and Practice of Finite Elements (Springer, Berlin/New York, 2004)

    Book  MATH  Google Scholar 

  23. C. Farhat, I. Harari, L.P. Franca, The discontinuous enrichment method. Comput. Methods Appl. Mech. Eng. 190, 6455–6479 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Glowinski, M.F. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations, ed. by R. Glowinski, G.H. Golub, G.A. Meurant, J.Périaux (Society for Industrial and Applied Mathematics, Philadelphia, 1988), pp. 144–172

    Google Scholar 

  25. C. Harder, A.L. Madureira, F. Valentin, A hybrid-mixed method for elasticity. ESAIM Math. Model. Numer. Anal. 5 (2), 311–336 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Harder, D. Paredes, F. Valentin, A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients. J. Comput. Phys. 245, 107–130 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Harder, D. Paredes, F. Valentin, On a multiscale hybrid-mixed method for advective-reactive dominated problems with heterogenous coefficients. SIAM Multiscale Model. Simul. 13, 491–518 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. T.Y. Hou, X. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Hughes, G. Sangalli, Variational multiscale analysis: the fine-scale green’s function, projection, optimization, localization, and stabilized methods. SIAM J. Numer. Anal. 45, 539–557 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. T.J.R. Hughes, G.R. Feijoo, L. Mazzei, J. Quincy, The variational multiscale method - a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Madureira, Abstract multiscale-hybrid-mixed methods. Calcolo 52 (4), 543–557 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Malqvist, D. Peterseim, Localization of elliptic multiscale problems. Math. Comput. 83, 2583–2603 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  34. M.Z. Nashed, Generalized inverses, normal solvability, and iteration for singular operator equations, in Nonlinear Functional Analysis and Applications. Proceedings of an Advanced Seminar Conducted by the Mathematics Research Center, the University of Wisconsin, Madison, Wisconsin, 1970 (Academic, New York, 1971), pp. 311–359

    Google Scholar 

  35. D. Paredes, F. Valentin, H.M. Versieux, On the robusteness of multiscale hybrid-mixed methods. Math. Comput. (2016). doi:dx.doi.org/10.1090/mcom/3108 (to appear)

  36. W.V. Petryshyn, On generalized inverses and on the uniform convergence of (ipk)n with application to iterative methods. J. Math. Anal. Appl. 18, 417–439 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  37. D.D.A. Pietro, A. Ern, S. Lemaire, A review of hybrid high-order methods: formulations, computational aspects, comparison with other methods, hal-01163569, INRIA (2015)

    Google Scholar 

  38. P. Raviart, J. Thomas, A mixed finite element method for 2nd order elliptic problems, in Mathematical Aspect of Finite Element Methods. Lecture Notes in Mathematics, vol. 606 (Springer, New York, 1977), pp. 292–315

    Google Scholar 

  39. P. Raviart, J. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comput. 31, 391–413 (1977)

    MathSciNet  MATH  Google Scholar 

  40. U. Rude, New mathematics for extremescale computational science. SIAM News, June 1st 2014

    Google Scholar 

  41. G. Sangalli, Capturing small scales in elliptic problems using a Residual-Free Bubbles finite element method. SIAM Multiscale Model. Simul. 1, 485–503 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Toselli, O. Widlund, Domain Decomposition Methods-Algorithms and Theory. Springer Series in Computational Mathematics, vol. 34 (Springer, Berlin, 2005)

    Google Scholar 

  43. W. E, B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1 (1), 87–132 (2003)

    Google Scholar 

  44. M.F. Wheeler, G. Xue, I. Yotov, A multiscale mortar multipoint flux mixed finite element method. Math. Models Methods Appl. Sci. 46, 759–796 (2012)

    MathSciNet  MATH  Google Scholar 

  45. J. Xu, L. Zikatanov, Some observations on Babuska and Brezzi theories. Math. Comput. 94, 195–202 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Valentin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Harder, C., Valentin, F. (2016). Foundations of the MHM Method. In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (eds) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-41640-3_13

Download citation

Publish with us

Policies and ethics