Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 114))

Abstract

This paper reviews the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L 2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Abdulle, Y. Bai, Reduced-order modelling numerical homogenization. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372 (2021), 20130388, 23 (2014)

    Google Scholar 

  2. A. Abdulle, P. Henning, A reduced basis localized orthogonal decomposition. J. Comput. Phys. 295, 379–401 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Abdulle, P. Henning, Localized orthogonal decomposition method for the wave equation with a continuum of scales. Math. Comput. (2015). doi:10.1090/mcom/3114

    MATH  Google Scholar 

  4. I. Babuška, Error-bounds for finite element method. Numer. Math. 16, 322–333 (1970/1971)

    Google Scholar 

  5. I. Babuska, R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9 (1), 373–406 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Babuška, J.E. Osborn, Can a finite element method perform arbitrarily badly? Math. Comput. 69 (230), 443–462 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. I.M. Babuška, S.A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM Rev. 42 (3), 451–484 (electronic) (2000)

    Google Scholar 

  8. T. Betcke, S.N. Chandler-Wilde, I.G. Graham, S. Langdon, M. Lindner, Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation. Numer. Methods Partial Differential Equations 27 (1), 31–69 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Brown, D. Peterseim, A multiscale method for porous microstructures (2014). ArXiv e-prints 1411.1944

    Google Scholar 

  10. D. Brown, D. Gallistl, D. Peterseim, Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations (2015). ArXiv e-prints 1511.09244

    Google Scholar 

  11. C. Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods. M2AN Math. Model. Numer. Anal. 33 (6), 1187–1202 (1999)

    Google Scholar 

  12. C. Carstensen, R. Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36 (5), 1571–1587 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. O. Cessenat, B. Despres, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35 (1), 255–299 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Clément, Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. RAIRO Analyse Numérique 9 (R-2), 77–84 (1975)

    Google Scholar 

  15. J.A. Cottrell, A. Reali, Y. Bazilevs, T.J.R. Hughes, Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195 (41–43), 5257–5296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA (Wiley, New York, 2009)

    Book  Google Scholar 

  17. P. Cummings, X. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Models Methods Appl. Sci. 16 (1), 139–160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Demkowicz, J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. II. Optimal test functions. Numer. Methods Partial Differential Equations 27 (1), 70–105 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Demkowicz, J. Gopalakrishnan, I. Muga, J. Zitelli, Wavenumber explicit analysis of a DPG method for the multidimensional Helmholtz equation. Comput. Methods Appl. Mech. Eng. 213/216, 126–138 (2012)

    Google Scholar 

  20. D.A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications, vol. 69 (Springer, Heidelberg, 2012)

    Google Scholar 

  21. D. Elfverson, A discontinuous Galerkin multiscale method for convection-diffusion problems (2015). ArXiv e-prints 1509.03523

    Google Scholar 

  22. D. Elfverson, E.H. Georgoulis, A. Målqvist, An adaptive discontinuous Galerkin multiscale method for elliptic problems. Multiscale Model. Simul. 11 (3), 747–765 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Elfverson, E.H. Georgoulis, A. Målqvist, D. Peterseim, Convergence of a discontinuous Galerkin multiscale method. SIAM J. Numer. Anal. 51 (6), 3351–3372 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Elfverson, M.G. Larson, A. Målqvist, Multiscale methods for problems with complex geometry (2015). ArXiv e-prints arXiv:1509.03991

    Google Scholar 

  25. D. Elfverson, V. Ginting, P. Henning, On multiscale methods in Petrov-Galerkin formulation. Numer. Math. 131 (4), 643–682 (2015). doi:10.1007/s00211-015-0703-z

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Esterhazy, J.M. Melenk, On stability of discretizations of the Helmholtz equation, in Numerical Analysis of Multiscale Problems. Lecture Notes in Computer Science and Engineering, vol. 83 (Springer, Heidelberg, 2012), pp. 285–324

    Google Scholar 

  27. X. Feng, H. Wu, Discontinuous Galerkin methods for the Helmholtz equation with large wave number. SIAM J. Numer. Anal. 47 (4), 2872–2896 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. X. Feng, H. Wu, hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comput. 80 (276), 1997–2024 (2011)

    Google Scholar 

  29. D. Gallistl, D. Peterseim, Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Comput. Methods Appl. Mech. Eng. 295, 1–17 (2015)

    Article  MathSciNet  Google Scholar 

  30. D. Gallistl, P. Huber, D. Peterseim, On the stability of the Rayleigh-Ritz method for eigenvalues (2015). INS Preprint 1527

    Google Scholar 

  31. C.J. Gittelson, R. Hiptmair, I. Perugia, Plane wave discontinuous galerkin methods: analysis of the h-version. ESAIM: Math. Model. Numer. Anal. 43 (2), 297–331, 2 (2009)

    Google Scholar 

  32. L. Grasedyck, I. Greff, S. Sauter, The AL basis for the solution of elliptic problems in heterogeneous media. Multiscale Model. Simul. 10 (1), 245–258 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. F. Hellman, P. Henning, A. Målqvist, Multiscale mixed finite elements (2015). arXiv Preprint 1501.05526

    Google Scholar 

  34. P. Henning, A. Målqvist, Localized orthogonal decomposition techniques for boundary value problems. SIAM J. Sci. Comput. 36 (4), A1609–A1634 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. P. Henning, D. Peterseim, Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11 (4), 1149–1175 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Henning, A. Målqvist, D. Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM: Math. Model. Numer. Anal. 48, 1331–1349 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. P. Henning, A. Målqvist, D. Peterseim, Two-level discretization techniques for ground state computations of Bose-Einstein condensates. SIAM J. Numer. Anal. 52 (4), 1525–1550 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. P. Henning, P. Morgenstern, D. Peterseim, Multiscale partition of unity, in Meshfree Methods for Partial Differential Equations VII, ed. by M. Griebel, M.A. Schweitzer. Lecture Notes in Computational Science and Engineering, vol. 100 (Springer International Publishing, Cham, 2015), pp. 185–204

    Google Scholar 

  39. U. Hetmaniuk, Stability estimates for a class of Helmholtz problems. Commun. Math. Sci. 5 (3), 665–678 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Hiptmair, A. Moiola, I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version. SIAM J. Numer. Anal. 49 (1), 264–284 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. T.J.R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127 (1–4), 387–401 (1995)

    Article  MATH  Google Scholar 

  42. T. Hughes, G. Sangalli, Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J. Numer. Anal. 45 (2), 539–557 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. T.J.R. Hughes, G.R. Feijóo, L. Mazzei, J.-B. Quincy, The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166 (1–2), 3–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. M.G. Larson, A. Målqvist, Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems. Comput. Methods Appl. Mech. Eng. 196 (21–24), 2313–2324 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. M.G. Larson, A. Målqvist, A mixed adaptive variational multiscale method with applications in oil reservoir simulation. Math. Models Methods Appl. Sci. 19 (07), 1017–1042 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. C. Makridakis, F. Ihlenburg, I. Babuška, Analysis and finite element methods for a fluid-solid interaction problem in one dimension. Math. Models Methods Appl. Sci. 06 (08), 1119–141 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  47. A. Målqvist, Adaptive variational multiscale methods. Ph.D. Thesis, Chalmers Tekniska Högskola, Sweden (2005)

    Google Scholar 

  48. A. Målqvist, Multiscale methods for elliptic problems. Multiscale Model. Simul. 9, 1064–1086 (2011)

    Article  MathSciNet  Google Scholar 

  49. A. Målqvist, A. Persson, Multiscale techniques for parabolic equations. ArXiv e-prints, 1504.08140 (2015)

    Google Scholar 

  50. A. Målqvist, D. Peterseim, Localization of elliptic multiscale problems. Math. Comput. 83 (290), 2583–2603 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. A. Målqvist, D. Peterseim, Computation of eigenvalues by numerical upscaling. Numer. Math. 130 (2), 337–361 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. A. Målqvist, D. Peterseim, Generalized finite element methods for quadratic eigenvalue problems (2016). ESAIM: M2AN. doi:10.1051/m2an/2016019

    Google Scholar 

  53. J.M. Melenk, On Generalized Finite-Element Methods (ProQuest LLC, Ann Arbor, MI, 1995). Ph.D. thesis, University of Maryland, College Park

    Google Scholar 

  54. J.M. Melenk, S.A. Sauter, Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions. Math. Comput. 79 (272), 1871–1914 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  55. J.M. Melenk, S. Sauter, Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49 (3), 1210–1243 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. J.M. Melenk, A. Parsania, S. Sauter, General DG-methods for highly indefinite Helmholtz problems. J. Sci. Comput. 57 (3), 536–581 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  57. H. Owhadi, Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games (2015). ArXiv e-prints, 1503.03467

    Google Scholar 

  58. H. Owhadi, L. Zhang, L. Berlyand, Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM: Math. Model. Numer. Anal. 48 (2), 517–552 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. D. Peterseim, Eliminating the pollution effect in Helmholtz problems by local subscale correction. ArXiv e-prints, 1411.1944 (2014)

    Google Scholar 

  60. D. Peterseim, R. Scheichl, Rigorous numerical upscaling at high contrast. Comput. Methods Appl. Math. doi:10.1515/mcom-2016-0022 (2016)

    MATH  Google Scholar 

  61. G. Rozza, D.B.P. Huynh, A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Meth. Eng. 15 (3), 229–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. L.R. Scott, S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (190), 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  63. D.B. Szyld, The many proofs of an identity on the norm of oblique projections. Numer. Algorithms 42 (3–4), 309–323 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  64. R. Tezaur, C. Farhat, Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int. J. Numer. Methods Eng. 66 (5), 796–815 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  65. H. Wu, Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I: linear version. IMA J. Numer. Anal. 34 (3), 1266–1288 (2014)

    MATH  Google Scholar 

  66. J. Zitelli, I. Muga, L. Demkowicz, J. Gopalakrishnan, D. Pardo, V.M. Calo, A class of discontinuous PetrovGalerkin methods. part IV: the optimal test norm and time-harmonic wave propagation in 1D. J. Comput. Phys. 230 (7), 2406–2432 (2011)

    Google Scholar 

Download references

Acknowledgements

The present work is the result of many fruitful collaborations over the past 4 years [9, 23, 29, 3538, 50, 51, 60]. I would like to thank all my co-authors, in particular Axel Målqvist, Patrick Henning, and Dietmar Gallistl.

The author gratefully acknowledges support by the Hausdorff Center for Mathematics Bonn and by Deutsche Forschungsgemeinschaft in the Priority Program 1748 “Reliable simulation techniques in solid mechanics. Development of non-standard discretization methods, mechanical and mathematical analysis” under the project “Adaptive isogeometric modeling of propagating strong discontinuities in heterogeneous materials”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Peterseim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peterseim, D. (2016). Variational Multiscale Stabilization and the Exponential Decay of Fine-Scale Correctors. In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (eds) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-41640-3_11

Download citation

Publish with us

Policies and ethics