Skip to main content

Stress, Exercise, and Epigenetic Modulation of Cancer

  • Chapter
  • First Online:
Epigenetics, Energy Balance, and Cancer

Part of the book series: Energy Balance and Cancer ((EBAC,volume 11))

  • 731 Accesses

Abstract

The term epigenetics is generally referred to phenotype modifications occurring in the DNA or the chromatin’s structure, which may influence the transcription of many genes independently of their primary nucleotide sequences. Although epigenetics is still in its infancy in the field of physical exercise, some studies convincingly suggest that epigenetic regulations may play an important role in modulating the favorable effects of exercise on development and progression of cancer. Several lines of evidence demonstrated that regular physical activity decreased the risk of several types of malignancies, and some of these beneficial effects are seemingly mediated by epigenetic modifications. More specifically, it has been clearly demonstrated that physical exercise is effective to induce histone modifications, methylation and acetylation of DNA, modulatory expression of microRNAs (miRNAs), as well as additional influences on proteins and biological pathways implicated in cancer biology such as tumor suppressor p53, lipoprotein(a), and hypoxia-inducible factor-1 (HIF-1). Although the available evidence does not support the notion that exercise-induced epigenetic changes always follow a unidirectional path in terms of cancer risk, the favorable effects of reduced cancer development and progression probably overwhelm cancer-promoting activities. If preliminary findings are confirmed in larger studies, physical exercise may hence be regarded as an appealing perspective for reducing the risk of cancer in different populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hippocrates (1953) Hippocrates: with an English translation by W. H. S. Jones. William Heinemann, London

    Google Scholar 

  2. Morris JN, Heady JA, Raffle PA et al (1953) Coronary heart-disease and physical activity of work. Lancet 265:1111–1120

    Article  CAS  PubMed  Google Scholar 

  3. Kokkinos P, Myers J (2010) Exercise and physical activity: clinical outcomes and applications. Circulation 122:1637–1648

    Article  PubMed  Google Scholar 

  4. Cherry T (1922) A theory of cancer. Med J Aust 1:435–438

    Google Scholar 

  5. Sivertsen I, Dahlstrom AW (1922) The relation of muscular activity to carcinoma: a preliminary report. J Cancer Res 6:365–378

    Google Scholar 

  6. Wiseman M (2008) The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc 67:253–256

    Article  PubMed  Google Scholar 

  7. WCRF/AICR (2007) Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. AICR, Washington DC

    Google Scholar 

  8. Wolin KY, Yan Y, Colditz GA et al (2009) Physical activity and colon cancer prevention: a meta-analysis. Br J Cancer 100:611–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boyle T, Keegel T, Bull F et al (2012) Physical activity and risks of proximal and distal colon cancers: a systematic review and meta-analysis. J Natl Cancer Inst 104:1548–1561

    Article  PubMed  Google Scholar 

  10. Slattery ML, Potter JD (2002) Physical activity and colon cancer: confounding or interaction? Med Sci Sports Exerc 34:913–919

    Article  PubMed  Google Scholar 

  11. Giovannucci E, Ascherio A, Rimm EB et al (1995) Physical activity, obesity, and risk for colon cancer and adenoma in men. Ann Intern Med 122:327–334

    Article  CAS  PubMed  Google Scholar 

  12. WCRF/AICR (2014) Continuous Update Project Report: Food. Nutrition, Physical Activity, and the Prevention of Breast Cancer, http://www.dietandcancerreport.org/cup/cup_resources.php. Accessed 16 Sept 2015

  13. IARC/WHO (2002) IARC Handbooks of Cancer Prevention: Weight Control and Physical Activity. IARC Press, Lyon

    Google Scholar 

  14. Wu Y, Zhang D, Kang S (2013) Physical activity and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res Treat 137:869–882

    Article  PubMed  Google Scholar 

  15. Goncalves AK, Dantas Florencio GL, Maisonnette de Atayde Silva MJ et al (2014) Effects of physical activity on breast cancer prevention: a systematic review. J Phys Act Health 11:445–454

    Google Scholar 

  16. Fournier A, Dos Santos G, Guillas G et al (2014) Recent recreational physical activity and breast cancer risk in postmenopausal women in the E3N cohort. Cancer Epidemiol Biomarkers Prev 23:1893–1902

    Article  PubMed  Google Scholar 

  17. Steindorf K, Ritte R, Eomois PP et al (2013) Physical activity and risk of breast cancer overall and by hormone receptor status: the European prospective investigation into cancer and nutrition. Int J Cancer 132:1667–1678

    Article  CAS  PubMed  Google Scholar 

  18. Monninkhof EM, Velthuis MJ, Peeters PH et al (2009) Effect of exercise on postmenopausal sex hormone levels and role of body fat: a randomized controlled trial. J Clin Oncol 27:4492–4499

    Article  CAS  PubMed  Google Scholar 

  19. Hirose K, Hamajima N, Takezaki T et al (2003) Physical exercise reduces risk of breast cancer in Japanese women. Cancer Sci 94:193–199

    Article  CAS  PubMed  Google Scholar 

  20. Thune I, Furberg AS (2001) Physical activity and cancer risk: dose-response and cancer, all sites and site-specific. Med Sci Sports Exerc 33:S530–550; discussion S609-510

    Article  CAS  PubMed  Google Scholar 

  21. Monninkhof EM, Elias SG, Vlems FA et al (2007) Physical activity and breast cancer: a systematic review. Epidemiology 18:137–157

    Article  PubMed  Google Scholar 

  22. Cust AE, Armstrong BK, Friedenreich CM et al (2007) Physical activity and endometrial cancer risk: a review of the current evidence, biologic mechanisms and the quality of physical activity assessment methods. Cancer Causes Control 18:243–258

    Article  PubMed  Google Scholar 

  23. Keum N, Ju W, Lee DH et al (2014) Leisure-time physical activity and endometrial cancer risk: dose-response meta-analysis of epidemiological studies. Int J Cancer 135:682–694

    Article  CAS  PubMed  Google Scholar 

  24. Moore SC, Gierach GL, Schatzkin A et al (2010) Physical activity, sedentary behaviours, and the prevention of endometrial cancer. Br J Cancer 103:933–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Voskuil DW, Monninkhof EM, Elias SG et al (2007) Physical activity and endometrial cancer risk, a systematic review of current evidence. Cancer Epidemiol Biomarkers Prev 16:639–648

    Article  PubMed  Google Scholar 

  26. Schmid D, Behrens G, Keimling M et al (2015) A systematic review and meta-analysis of physical activity and endometrial cancer risk. Eur J Epidemiol 30:397–412

    Article  CAS  PubMed  Google Scholar 

  27. Leitzmann M, Powers H, Anderson AS et al (2015) European Code against Cancer 4th edition: Physical activity and cancer., Cancer Epidemiol

    Google Scholar 

  28. Ballard-Barbash R, Friedenreich CM, Courneya KS et al (2012) Physical activity, biomarkers, and disease outcomes in cancer survivors: a systematic review. J Natl Cancer Inst 104:815–840

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ibrahim EM, Al-Homaidh A (2011) Physical activity and survival after breast cancer diagnosis: meta-analysis of published studies. Med Oncol 28:753–765

    Article  PubMed  Google Scholar 

  30. Je Y, Jeon JY, Giovannucci EL et al (2013) Association between physical activity and mortality in colorectal cancer: a meta-analysis of prospective cohort studies. Int J Cancer 133:1905–1913

    Article  CAS  PubMed  Google Scholar 

  31. Schmid D, Leitzmann MF (2014) Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol 25:1293–1311

    Article  CAS  PubMed  Google Scholar 

  32. Sanchis-Gomar F, Lippi G (2014) Physical activity - an important preanalytical variable. Biochem Med (Zagreb) 24:68–79

    Article  Google Scholar 

  33. Sanchis-Gomar F, Olaso-Gonzalez G, Corella D et al (2011) Increased Average Longevity among the "Tour de France" Cyclists. Int J Sports Med 32:644–647

    Article  CAS  PubMed  Google Scholar 

  34. Lippi G, Plebani M (2013) Biomarker research and leading causes of death worldwide: a rather feeble relationship. Clin Chem Lab Med 51:1691–1693

    CAS  PubMed  Google Scholar 

  35. Haskell WL, Lee IM, Pate RR et al (2007) Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 39:1423–1434

    Article  PubMed  Google Scholar 

  36. Nelson ME, Rejeski WJ, Blair SN et al (2007) Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 116:1094–1105

    Article  PubMed  Google Scholar 

  37. Organization WH (2010) Global Recommendations on Physical Activity for Health. WHO Press, Geneva, Switzerland

    Google Scholar 

  38. Kushi LH, Doyle C, McCullough M et al (2012) American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin 62:30–67

    Article  PubMed  Google Scholar 

  39. Rock CL, Doyle C, Demark-Wahnefried W et al (2012) Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin 62:243–274

    Article  PubMed  Google Scholar 

  40. McTiernan A, Ulrich C, Slate S et al (1998) Physical activity and cancer etiology: associations and mechanisms. Cancer Causes Control 9:487–509

    Article  CAS  PubMed  Google Scholar 

  41. Friedenreich CM, Orenstein MR (2002) Physical activity and cancer prevention: etiologic evidence and biological mechanisms. J Nutr 132:3456S–3464S

    CAS  PubMed  Google Scholar 

  42. Pareja-Galeano H, Sanchis-Gomar F, Garcia-Gimenez JL (2014) Physical exercise and epigenetic modulation: elucidating intricate mechanisms. Sports Med 44:429–436

    Article  PubMed  Google Scholar 

  43. Garcia-Gimenez JL, Sanchis-Gomar F, Lippi G et al (2012) Epigenetic biomarkers: A new perspective in laboratory diagnostics. Clin Chim Acta 413:1576–1582

    Article  CAS  PubMed  Google Scholar 

  44. Horsburgh S, Robson-Ansley P, Adams R et al (2015) Exercise and inflammation-related epigenetic modifications: focus on DNA methylation. Exerc Immunol Rev 21:26–41

    PubMed  Google Scholar 

  45. Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56

    PubMed  Google Scholar 

  46. Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2(Suppl 1):S4–11

    Article  CAS  PubMed  Google Scholar 

  47. Brown WM (2015) Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis., Br J Sports Med

    Google Scholar 

  48. Liu M, Guo S, Stiles JK (2011) The emerging role of CXCL10 in cancer (Review). Oncol Lett 2:583–589

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu Y, Meng F, Xu Y et al (2013) Overexpression of Wnt7a is associated with tumor progression and unfavorable prognosis in endometrial cancer. Int J Gynecol Cancer 23:304–311

    Article  PubMed  Google Scholar 

  50. Gurvich N, Perna F, Farina A et al (2010) L3MBTL1 polycomb protein, a candidate tumor suppressor in del(20q12) myeloid disorders, is essential for genome stability. Proc Natl Acad Sci U S A 107:22552–22557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abdollahi A, Pisarcik D, Roberts D et al (2003) LOT1 (PLAGL1/ZAC1), the candidate tumor suppressor gene at chromosome 6q24-25, is epigenetically regulated in cancer. J Biol Chem 278:6041–6049

    Article  CAS  PubMed  Google Scholar 

  52. Fearon ER, Pierceall WE (1995) The deleted in colorectal cancer (DCC) gene: a candidate tumour suppressor gene encoding a cell surface protein with similarity to neural cell adhesion molecules. Cancer Surv 24:3–17

    CAS  PubMed  Google Scholar 

  53. Sablina AA, Hector M, Colpaert N et al (2010) Identification of PP2A complexes and pathways involved in cell transformation. Cancer Res 70:10474–10484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu Y, Liu T, Sun Q et al (2015) Downregulation of Ras GTPaseactivating protein 1 is associated with poor survival of breast invasive ductal carcinoma patients. Oncol Rep 33:119–124

    PubMed  Google Scholar 

  55. Lai JP, Sandhu DS, Shire AM et al (2008) The tumor suppressor function of human sulfatase 1 (SULF1) in carcinogenesis. J Gastrointest Cancer 39:149–158

    Article  CAS  PubMed  Google Scholar 

  56. Ou D, Yang H, Hua D et al (2015) Novel roles of TMEM100: inhibition metastasis and proliferation of hepatocellular carcinoma. Oncotarget 6:17379–17390

    Article  PubMed  PubMed Central  Google Scholar 

  57. Holgado-Madruga M, Emlet DR, Moscatello DK et al (1996) A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature 379:560–564

    Article  CAS  PubMed  Google Scholar 

  58. Moniz S, Jordan P (2010) Emerging roles for WNK kinases in cancer. Cell Mol Life Sci 67:1265–1276

    Article  CAS  PubMed  Google Scholar 

  59. Walkinshaw DR, Tahmasebi S, Bertos NR et al (2008) Histone deacetylases as transducers and targets of nuclear signaling. J Cell Biochem 104:1541–1552

    Article  CAS  PubMed  Google Scholar 

  60. Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8:284–295

    Article  CAS  PubMed  Google Scholar 

  61. Feng Q, Wang H, Ng HH et al (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12:1052–1058

    Article  CAS  PubMed  Google Scholar 

  62. Frosig C, Rose AJ, Treebak JT et al (2007) Effects of endurance exercise training on insulin signaling in human skeletal muscle: interactions at the level of phosphatidylinositol 3-kinase, Akt, and AS160. Diabetes 56:2093–2102

    Article  PubMed  Google Scholar 

  63. Host HH, Hansen PA, Nolte LA et al (1985) (1998) Rapid reversal of adaptive increases in muscle GLUT-4 and glucose transport capacity after training cessation. J Appl Physiol 84:798–802

    Google Scholar 

  64. Kraniou GN, Cameron-Smith D, Hargreaves M (2004) Effect of short-term training on GLUT-4 mRNA and protein expression in human skeletal muscle. Exp Physiol 89:559–563

    Article  CAS  PubMed  Google Scholar 

  65. Richter EA, Hargreaves M (2013) Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93:993–1017

    Article  CAS  PubMed  Google Scholar 

  66. McGee SL, Hargreaves M (2011) Histone modifications and exercise adaptations. J Appl Physiol 110:258–263

    Article  CAS  PubMed  Google Scholar 

  67. Cao L, Liu X, Lin EJ et al (2010) Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell 142:52–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu X, McMurphy T, Xiao R et al (2014) Hypothalamic gene transfer of BDNF inhibits breast cancer progression and metastasis in middle age obese mice. Mol Ther 22:1275–1284

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Flowers E, Won GY, Fukuoka Y (2015) MicroRNAs associated with exercise and diet: a systematic review. Physiol Genomics 47:1–11

    Article  CAS  PubMed  Google Scholar 

  70. Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:13944–13949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cummins JM, He Y, Leary RJ et al (2006) The colorectal microRNAome. Proc Natl Acad Sci U S A 103:3687–3692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Michael MZ, O’ Connor SM, van Holst Pellekaan NG et al (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891

    Google Scholar 

  73. He L, Thomson JM, Hemann MT et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Epel ES, Lin J, Dhabhar FS et al (2010) Dynamics of telomerase activity in response to acute psychological stress. Brain Behav Immun 24:531–539

    Article  CAS  PubMed  Google Scholar 

  75. De Lange T (2005) Telomere-related genome instability in cancer. Cold Spring Harb Symp Quant Biol 70:197–204

    Article  PubMed  Google Scholar 

  76. Wu X, Amos CI, Zhu Y et al (2003) Telomere dysfunction: a potential cancer predisposition factor. J Natl Cancer Inst 95:1211–1218

    Article  CAS  PubMed  Google Scholar 

  77. McGrath M, Wong JY, Michaud D et al (2007) Telomere length, cigarette smoking, and bladder cancer risk in men and women. Cancer Epidemiol Biomarkers Prev 16:815–819

    Article  CAS  PubMed  Google Scholar 

  78. Meeker AK (2006) Telomeres and telomerase in prostatic intraepithelial neoplasia and prostate cancer biology. Urol Oncol 24:122–130

    Article  CAS  PubMed  Google Scholar 

  79. Chilton WL, Marques FZ, West J et al (2014) Acute exercise leads to regulation of telomere-associated genes and microRNA expression in immune cells. PLoS One 9, e92088

    Article  PubMed  PubMed Central  Google Scholar 

  80. Oh BK, Kim YJ, Park C et al (2005) Up-regulation of telomere-binding proteins, TRF1, TRF2, and TIN2 is related to telomere shortening during human multistep hepatocarcinogenesis. Am J Pathol 166:73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Matsutani N, Yokozaki H, Tahara E et al (2001) Expression of telomeric repeat binding factor 1 and 2 and TRF1-interacting nuclear protein 2 in human gastric carcinomas. Int J Oncol 19:507–512

    CAS  PubMed  Google Scholar 

  82. Tonevitsky AG, Maltseva DV, Abbasi A et al (2013) Dynamically regulated miRNA-mRNA networks revealed by exercise. BMC Physiol 13:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  CAS  PubMed  Google Scholar 

  84. Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12:613–626

    Article  CAS  PubMed  Google Scholar 

  85. Rokavec M, Li H, Jiang L et al (2014) The p53/miR-34 axis in development and disease. J Mol Cell Biol 6:214–230

    Article  CAS  PubMed  Google Scholar 

  86. Hermeking H (2007) p53 enters the microRNA world. Cancer Cell 12:414–418

    Article  CAS  PubMed  Google Scholar 

  87. Sanchis-Gomar F, Garcia-Gimenez JL, Perez-Quilis C et al (2012) Physical exercise as an epigenetic modulator: Eustress, the “positive stress” as an effector of gene expression. J Strength Cond Res 26:3469–3472

    Article  PubMed  Google Scholar 

  88. Bye A, Rosjo H, Aspenes ST et al (2013) Circulating microRNAs and aerobic fitness--the HUNT-Study. PLoS One 8, e57496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Park SY, Lee JH, Ha M et al (2009) miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 16:23–29

    Article  CAS  PubMed  Google Scholar 

  90. Le MT, Teh C, Shyh-Chang N et al (2009) MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23:862–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nishida N, Yokobori T, Mimori K et al (2011) MicroRNA miR-125b is a prognostic marker in human colorectal cancer. Int J Oncol 38:1437–1443

    Article  CAS  PubMed  Google Scholar 

  92. Radom-Aizik S, Zaldivar F Jr, Leu SY et al (2012) Effects of exercise on microRNA expression in young males peripheral blood mononuclear cells. Clin Transl Sci 5:32–38

    Article  PubMed  PubMed Central  Google Scholar 

  93. de Gonzalo-Calvo D, Davalos A, Montero A et al (1985) (2015) Circulating inflammatory miRNA signature in response to different doses of aerobic exercise. J Appl Physiol 119:124–134

    Article  Google Scholar 

  94. Radom-Aizik S, Zaldivar F, Haddad F et al (1985) (2013) Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults. J Appl Physiol 114:628–636

    Article  Google Scholar 

  95. Zhang Y, Zhu X, Bai M et al (2013) Maternal deprivation enhances behavioral vulnerability to stress associated with miR-504 expression in nucleus accumbens of rats. PLoS One 8, e69934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hu W, Chan CS, Wu R et al (2010) Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell 38:689–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  CAS  PubMed  Google Scholar 

  98. Lindholm ME, Fischer H, Poellinger L et al (2014) Negative regulation of HIF in skeletal muscle of elite endurance athletes: a tentative mechanism promoting oxidative metabolism. Am J Physiol Regul Integr Comp Physiol 307:R248–255

    Article  CAS  PubMed  Google Scholar 

  99. Koltai E, Szabo Z, Atalay M et al (2010) Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech Ageing Dev 131:21–28

    Article  CAS  PubMed  Google Scholar 

  100. Mackinnon LT, Hubinger LM (1999) Effects of exercise on lipoprotein(a). Sports Med 28:11–24

    Article  CAS  PubMed  Google Scholar 

  101. Muller N, Schulte DM, Turk K et al (2015) IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in humans. J Lipid Res 56:1034–1042

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lippi G (2005) Lipoprotein(a)-lowering therapies: A double edged sword? Atherosclerosis 242:504–505

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Lippi M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lippi, G., Danese, E., Sanchis-Gomar, F. (2016). Stress, Exercise, and Epigenetic Modulation of Cancer. In: Berger, N. (eds) Epigenetics, Energy Balance, and Cancer. Energy Balance and Cancer, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-41610-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41610-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41608-3

  • Online ISBN: 978-3-319-41610-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics