Advertisement

Nutritional and Lifestyle Impact on Epigenetics and Cancer

  • Eswar Shankar
  • Sanjay GuptaEmail author
Chapter
Part of the Energy Balance and Cancer book series (EBAC, volume 11)

Abstract

Nutrition and lifestyle factors play an important role in human health as dietary imbalances are major determinants of several diseases including cancer. Emerging studies suggest that diet and nutrition can impact gene expression through epigenetic mechanisms. Epigenetic modifications are heritable and cause potentially reversible changes in gene expression that do not require alteration in DNA sequence. Epigenetic marks include changes in DNA methylation, histone modifications, and small noncoding miRNA. Aberrant epigenetic modifications probably occur at an early stage in neoplastic development and are widely described as essential players in cancer progression. Epigenetic modifications also mediate environmental signals and provide links between susceptibility genes and environmental factors in the etiology of cancer. The present chapter initially highlights the role of various epigenetic mechanisms in the regulation and maintenance of mammalian genome. Focusing on the effect of various endogenous factors that include environmental, lifestyle, nutritional, and social-economic/racial aspects; this chapter discusses their impact on the process of carcinogenesis through various epigenetic modifications. Elucidating the impact of nutrition and lifestyle factors on epigenetic mechanisms may serve as a personalized prediction tool assessing cancer susceptibility and in providing recommendation and guide for prevention and therapeutic options against cancer.

Keywords

DNA methylation Histone modification Noncoding RNA Dietary agents Gene−environment interaction Carcinogens Chemoprevention 

Abbreviations

AA

African American

BPDE

Benzo(a)pyrene diol epoxide

CA

Caucasian American

DNA

Deoxyribonucleic acid

DNMT

DNA methyltransferases

EGCG

Epigallocatechin-3-gallate

ER

Estrogen receptor

EZH2

Enhancer of zeste homolog 2

GSTP1

Glutathione S-transferase pi

GTP

Green tea polyphenols

HAT

Histone acetyltransferase

HDAC

Histone deacetylases

HDM

Histone demethylases

hMLH1

Human mutL homolog 1

HMT

Histone methyltransferases

HPV

Human papillomavirus

IGF

Insulin-like growth factor

LINE

Long interspersed nuclear element

lncRNA

Long noncoding RNA

LSD1

Lysine specific demethylase 1

MBD

Methyl-binding domain proteins

MGMT

O(6)-methylguanine methyltransferase

miRNA

MicroRNA

ncRNA

Noncoding RNA

PAH

Polycyclic aromatic hydrocarbons

PcG

Polycomb-group proteins

piRNA

Piwi-interacting RNA

RARbeta

Retinoic acid receptor beta

RepA

Short repeat RNA

SAH

S-adenosyl-l-homocysteine

SAM

S-adenosyl methionine

SFN

Sulforaphane

siRNA

Small interfering RNA

TIMP-3

Tissue inhibitor of metalloproteinases-3

Notes

Acknowledgment

The original work from author’s laboratory outlined in this chapter was supported by United States Public Health Service Grants R01CA115491, R01CA108512, R21CA193080, and R03CA186179, and Department of Veteran Affairs grant 1I01BX002494 to SG.

Conflict of Interest: The authors have no competing interest.

References

  1. 1.
    Issa JP, Kantarjian HM (2009) Targeting DNA methylation. Clin Cancer Res 15(12):3938–3946PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Dehan P, Kustermans G, Guenin S et al (2009) DNA methylation and cancer diagnosis: new methods and applications. Expert Rev Mol Diagn 9(7):651–657PubMedCrossRefGoogle Scholar
  3. 3.
    Gerhauser C (2013) Epigenetic impact of dietary isothiocyanates in cancer chemoprevention. Curr Opin Clin Nutr Metab Care 16(4):405–410PubMedCrossRefGoogle Scholar
  4. 4.
    Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9(16):2395–2402PubMedCrossRefGoogle Scholar
  5. 5.
    Santi DV, Garrett CE, Barr PJ (1983) On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell 33(1):9–10PubMedCrossRefGoogle Scholar
  6. 6.
    Gerhauser C (2013) Cancer chemoprevention and nutriepigenetics: state of the art and future challenges. Top Curr Chem 329:73–132PubMedCrossRefGoogle Scholar
  7. 7.
    Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21PubMedCrossRefGoogle Scholar
  8. 8.
    Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254PubMedCrossRefGoogle Scholar
  9. 9.
    Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13(8):335–340PubMedCrossRefGoogle Scholar
  10. 10.
    Okano M, Bell DW, Haber DA et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257PubMedCrossRefGoogle Scholar
  11. 11.
    Bourc’his D, Xu GL, Lin CS et al (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294(5551):2536–2539PubMedCrossRefGoogle Scholar
  12. 12.
    Watt F, Molloy PL (1988) Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev 2(9):1136–1143PubMedCrossRefGoogle Scholar
  13. 13.
    Bell D, Chomarat P, Broyles D et al (1999) In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 190(10):1417–1426PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ohlsson R, Renkawitz R, Lobanenkov V (2001) CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet 17(9):520–527PubMedCrossRefGoogle Scholar
  15. 15.
    Hark AT, Schoenherr CJ, Katz DJ et al (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405(6785):486–489PubMedCrossRefGoogle Scholar
  16. 16.
    Tate PH, Bird AP (1993) Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 3(2):226–231PubMedCrossRefGoogle Scholar
  17. 17.
    Jones PL, Veenstra GJ, Wade PA et al (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19(2):187–191PubMedCrossRefGoogle Scholar
  18. 18.
    Nan X, Ng HH, Johnson CA (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683):386–389PubMedCrossRefGoogle Scholar
  19. 19.
    Feng Q, Zhang Y (2001) The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev 15:827–832PubMedPubMedCentralGoogle Scholar
  20. 20.
    Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18(11):6538–6547PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Nan X, Meehan RR, Bird A (1993) Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res 21:4886–4892PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Luger K, Richmond TJ (1998) DNA binding within the nucleosome core. Curr Opin Struct Biol 8(1):33–40PubMedCrossRefGoogle Scholar
  23. 23.
    Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98(3):285–294PubMedCrossRefGoogle Scholar
  24. 24.
    Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45PubMedCrossRefGoogle Scholar
  25. 25.
    Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12(5):599–606PubMedCrossRefGoogle Scholar
  26. 26.
    Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20(8):615–626PubMedCrossRefGoogle Scholar
  28. 28.
    Sauve AA, Wolberger C, Schramm VL et al (2006) The biochemistry of sirtuins. Annu Rev Biochem 75:435–465PubMedCrossRefGoogle Scholar
  29. 29.
    Mottet D, Castronovo V (2008) Histone deacetylases: target enzymes for cancer therapy. Clin Exp Metastasis 25(2):183–189PubMedCrossRefGoogle Scholar
  30. 30.
    Shi X, Kachirskaia I, Yamaguchi H et al (2007) Modulation of p53 function by SET8-mediated methylation at lysine 382. Mol Cell 27(4):636–646PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Rice JC, Allis CD (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13(3):263–273PubMedCrossRefGoogle Scholar
  32. 32.
    Upadhyay AK, Cheng X (2011) Dynamics of histone lysine methylation: structures of methyl writers and erasers. Prog Drug Res 67:107–124PubMedPubMedCentralGoogle Scholar
  33. 33.
    Deb G, Singh AK, Gupta S (2014) EZH2: not EZHY (easy) to deal. Mol Cancer Res 12(5):639–653PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kouzarides T (2007) SnapShot: histone-modifying enzymes. Cell 128(4):802PubMedCrossRefGoogle Scholar
  35. 35.
    Suzuki T, Miyata N (2006) Rational design of non-hydroxamate histone deacetylase inhibitors. Mini Rev Med Chem 6(5):515–526PubMedCrossRefGoogle Scholar
  36. 36.
    Costa FF (2008) Non-coding RNAs, epigenetics and complexity. Gene 410(1):9–17PubMedCrossRefGoogle Scholar
  37. 37.
    Peschansky VJ, Wahlestedt C (2014) Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9(1):3–12PubMedCrossRefGoogle Scholar
  38. 38.
    Zhou H, Hu H, Lai M (2010) Non-coding RNAs and their epigenetic regulatory mechanisms. Biol Cell 102(12):645–655PubMedCrossRefGoogle Scholar
  39. 39.
    Mattick JS (2005) The functional genomics of noncoding RNA. Science 309(5740):1527–1528PubMedCrossRefGoogle Scholar
  40. 40.
    Szymanski M, Barciszewska MZ, Erdmann VA et al (2005) A new frontier for molecular medicine: noncoding RNAs. Biochim Biophys Acta 1756(1):65–75PubMedGoogle Scholar
  41. 41.
    Ulitsky I, Shkumatava A, Jan CH et al (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147(7):1537–1550PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Magistri M, Faghihi MA, St Laurent G 3rd et al (2012) Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. Trends Genet 28(8):389–396PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    De Lucia F, Dean C (2011) Long non-coding RNAs and chromatin regulation. Curr Opin Plant Biol 14(2):168–173PubMedCrossRefGoogle Scholar
  44. 44.
    Pasmant E, Laurendeau I, Héron D et al (2007) Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res 67(8):3963–3969PubMedCrossRefGoogle Scholar
  45. 45.
    Kotake Y, Nakagawa T, Kitagawa K et al (2011) Longnon-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30(16):1956–1962PubMedCrossRefGoogle Scholar
  46. 46.
    Mak W, Baxter J, Silva J et al (2002) Mitotically stable association of polycomb group proteins eed and enx1 with the inactive x chromosome in trophoblast stem cells. Curr Biol 12(12):1016–1020PubMedCrossRefGoogle Scholar
  47. 47.
    Plath K, Fang J, Mlynarczyk-Evans SK et al (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300(5616):131–135PubMedCrossRefGoogle Scholar
  48. 48.
    Silva J, Mak W, Zvetkova I et al (2003) Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell 4(4):481–495PubMedCrossRefGoogle Scholar
  49. 49.
    Zhao J, Sun BK, Erwin JA et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322(5902):750–756PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Mohammad F, Mondal T, Guseva N et al (2010) Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development 137(15):2493–2499PubMedCrossRefGoogle Scholar
  51. 51.
    Kanhere A, Viiri K, Araújo CC et al (2010) Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol Cell 38(5):675–688PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Deb G, Thakur VS, Gupta S (2013) Multifaceted role of EZH2 in breast and prostate tumorigenesis: epigenetics and beyond. Epigenetics 8(5):464–476PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sander S, Bullinger L, Klapproth K et al (2008) MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 112(10):4202–4212PubMedCrossRefGoogle Scholar
  54. 54.
    Varambally S, Cao Q, Mani RS et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322(5908):1695–1699PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Juan AH, Kumar RM, Marx JG et al (2009) Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell 36(1):61–74PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Liu R, Chen X, Du Y et al (2012) Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin Chem 58(3):610–618PubMedCrossRefGoogle Scholar
  57. 57.
    Godlewski J, Nowicki MO, Bronisz A et al (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68(22):9125–9130PubMedCrossRefGoogle Scholar
  58. 58.
    Wellner U, Schubert J, Burk UC et al (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11(12):1487–1495PubMedCrossRefGoogle Scholar
  59. 59.
    Fabbri M, Ivan M, Cimmino A et al (2007) Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin Biol Ther 7(7):1009–1019PubMedCrossRefGoogle Scholar
  60. 60.
    Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179PubMedCrossRefGoogle Scholar
  61. 61.
    Lehmann U, Hasemeier B, Römermann D et al (2007) Epigenetic inactivation of microRNA genes in mammary carcinoma. Verh Dtsch Ges Pathol 91:214–220PubMedGoogle Scholar
  62. 62.
    Hsu RJ, Yang HJ, Tsai HJ (2009) Labeled microRNA pull-down assay system: an experimental approach for high-throughput identification of microRNA-target mRNAs. Nucleic Acids Res 37(10):77CrossRefGoogle Scholar
  63. 63.
    Lujambio A, Calin GA, Villanueva A et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 105(36):13556–13561PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    de Leeuw WJ, Dierssen J, Vasen HF, Wijnen JT et al (2000) Prediction of a mismatch repair gene defect by microsatellite instability and immunohistochemical analysis in endometrial tumours from HNPCC patients. J Pathol 192(3):328–335PubMedCrossRefGoogle Scholar
  65. 65.
    Khin SS, Kitazawa R, Kondo T et al (2011) Epigenetic alteration by DNA promoter hypermethylation of genes related to transforming growth factor-β (TGF-β) signaling in cancer. Cancers (Basel) 3(1):982–993CrossRefGoogle Scholar
  66. 66.
    Chen JX, Zheng Y, West M et al (1998) Carcinogens preferentially bind at methylated CpG in the p53 mutational hot spots. Cancer Res 58:2070–2075PubMedGoogle Scholar
  67. 67.
    Yoon JH, Smith LE, Feng Z et al (2001) Methylated CpG dinucleotides are the preferential targets for G-to-T transversion mutations induced by benzo[a]pyrene diol epoxide in mammalian cells: similarities with the p53 mutation spectrum in smoking-associated lung cancers. Cancer Res 61:7110–7117PubMedGoogle Scholar
  68. 68.
    Osada H, Takahashi T (2002) Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer. Oncogene 21:7421–7434PubMedCrossRefGoogle Scholar
  69. 69.
    Belinsky SA, Klinge DM, Liechty KC et al (2004) Plutonium targets the p16 gene for inactivation by promoter hypermethylation in human lung adenocarcinoma. Carcinogenesis 25:1063–1067PubMedCrossRefGoogle Scholar
  70. 70.
    Cameron EE, Bachman KE, Myohanen S (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107PubMedCrossRefGoogle Scholar
  71. 71.
    Sutherland JE, Costa M (2003) Epigenetics and the environment. Ann N Y Acad Sci 983:151–160PubMedCrossRefGoogle Scholar
  72. 72.
    Broday L, Cai J, Costa M (1999) Nickel enhances telomeric silencing in Saccharomyces cerevisiae. Mutat Res 440:121–130PubMedCrossRefGoogle Scholar
  73. 73.
    Karaczyn AA, Golebiowski F, Kasprzak KS (2005) Truncation, deamidation, and oxidation of histone H2B in cells cultured with nickel(II). Chem Res Toxicol 18:1934–1942PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang YJ, Ahsan H, Chen Y et al (2002) High frequency of promoter hypermethylation of RASSF1A and p16 and its relationship to aflatoxin B1-DNA adduct levels in human hepatocellular carcinoma. Mol Carcinog 35:85–92PubMedCrossRefGoogle Scholar
  75. 75.
    Zhang YJ, Chen Y, Ahsan H et al (2003) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation and its relationship to aflatoxin B1-DNA adducts and p53 mutation in hepatocellular carcinoma. Int J Cancer 103:440–444PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang YJ, Rossner P Jr, Chen Y et al (2006) Aflatoxin B1 and polycyclic aromatic hydrocarbon adducts, p53 mutations and p16 methylation in liver tissue and plasma of hepatocellular carcinoma patients. Int J Cancer 119:985–991PubMedCrossRefGoogle Scholar
  77. 77.
    Takiguchi M, Achanzar WE, Qu W et al (2003) Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res 286:355–365PubMedCrossRefGoogle Scholar
  78. 78.
    Zhao CQ, Young MR, Diwan BA et al (1997) Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A 94:10907–10912PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Chen H, Liu J, Zhao CQ et al (2001) Association of c-myc overexpression and hyperproliferation with arsenite-induced malignant transformation. Toxicol Appl Pharmacol 175:260–268PubMedCrossRefGoogle Scholar
  80. 80.
    Van Doorn R, Gruis NA, Willemze R et al (2005) Aberrant DNA methylation in cutaneous malignancies. Semin Oncol 32:479–487PubMedCrossRefGoogle Scholar
  81. 81.
    Mittal A, Piyathilake C, Hara Y et al (2003) Exceptionally high protection of photocarcinogenesis by topical application of (–)-epigallocatechin-3-gallate in hydrophilic cream in SKH-1 hairless mouse model: relationship to inhibition of UVB-induced global DNA hypomethylation. Neoplasia 5:555–565PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Maekita T, Nakazawa K, Mihara M et al (2006) High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res 12:989–995PubMedCrossRefGoogle Scholar
  83. 83.
    Sugiyama A, Maruta F, Ikeno T et al (1998) Helicobacter pylori infection enhances N-methyl-N-nitrosourea-induced stomach carcinogenesis in the Mongolian gerbil. Cancer Res 58:2067–2069PubMedGoogle Scholar
  84. 84.
    Szaleczky E, Pronai L, Molnar B et al (2000) Increased cell proliferation in chronic Helicobacter pylori positive gastritis and gastric carcinoma–correlation between immuno-histochemistry and Tv image cytometry. Anal Cell Pathol 20:131–139PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    De Capoa A, Musolino A, Della Rosa S et al (2003) DNA demethylation is directly related to tumour progression: evidence in normal, pre-malignant and malignant cells from uterine cervix samples. Oncol Rep 10:545–549PubMedGoogle Scholar
  86. 86.
    Van Tine BA, Kappes JC, Banerjee NS et al (2004) Clonal selection for transcriptionally active viral oncogenes during progression to cancer. J Virol 78:11172–11186PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Zheng ZM, Baker CC (2006) Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci 11:2286–2302PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kalantari M, Calleja-Macias IE, Tewari D et al (2004) Conserved methylation patterns of human papillomavirus type 16 DNA in asymptomatic infection and cervical neoplasia. J Virol 78:12762–12772PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wiley DJ, Huh J, Rao JY et al (2005) Methylation of human papillomavirus genomes in cells of anal epithelia of HIV-infected men. J Acquir Immune Defic Syndr 39:143–151PubMedGoogle Scholar
  90. 90.
    Zhou L, Jiang W, Ren C et al (2005) Frequent hypermethylation of RASSF1A and TSLC1, and high viral load of Epstein-Barr Virus DNA in nasopharyngeal carcinoma and matched tumor-adjacent tissues. Neoplasia 7:809–815PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Zazula M, Ferreira AM, Czopek JP et al (2006) CDH1 gene promoter hypermethylation in gastric cancer: relationship to Goseki grading, microsatellite instability status, and EBV invasion. Diagn Mol Pathol 15:24–29PubMedCrossRefGoogle Scholar
  92. 92.
    Jicai Z, Zongtao Y, Jun L et al (2006) Persistent infection of hepatitis B virus is involved in high rate of p16 methylation in hepatocellular carcinoma. Mol Carcinog 45:530–536PubMedCrossRefGoogle Scholar
  93. 93.
    Zhang J, Martins CR, Fansler ZB et al (2005) DNA methylation in anal intraepithelial lesions and anal squamous cell carcinoma. Clin Cancer Res 11:6544–6549PubMedCrossRefGoogle Scholar
  94. 94.
    Feng Q, Balasubramanian A, Hawes SE et al (2005) Detection of hypermethylated genes in women with and without cervical neoplasia. J Natl Cancer Inst 97(4):273–282PubMedCrossRefGoogle Scholar
  95. 95.
    Van Engeland M, Weijenberg MP, Roemen GM et al (2003) Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res 63:3133–3137PubMedGoogle Scholar
  96. 96.
    Giovannucci E, Rimm EB, Ascherio A et al (1995) Alcohol, low-methionine–low-folate diets, and risk of colon cancer in men. J Natl Cancer Inst 87:265–273PubMedCrossRefGoogle Scholar
  97. 97.
    Puri SK, Si L, Fan CY, Hanna E (2005) Aberrant promoter hypermethylation of multiple genes in head and neck squamous cell carcinoma. Am J Otolaryngol 26:12–17PubMedCrossRefGoogle Scholar
  98. 98.
    Marsit CJ, McClean MD, Furniss CS et al (2006) Epigenetic inactivation of the SFRP genes is associated with drinking, smoking and HPV in head and neck squamous cell carcinoma. Int J Cancer 119:1761–1766PubMedCrossRefGoogle Scholar
  99. 99.
    Olaharski AJ, Rine J, Marshall BL et al (2005) The flavoring agent dihydrocoumarin reverses epigenetic silencing and inhibits sirtuin deacetylases. PLoS Genet 1:e77PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Haigis MC, Guarente LP (2006) Mammalian sirtuins–emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921PubMedCrossRefGoogle Scholar
  101. 101.
    Waterland RA (2006) Assessing the effects of high methionine intake on DNA methylation. J Nutr 136:1706S–1710SPubMedGoogle Scholar
  102. 102.
    Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Richardson B (2003) Impact of aging on DNA methylation. Ageing Res Rev 2:245–261PubMedCrossRefGoogle Scholar
  104. 104.
    Wilson VL, Jones PA (1983) DNA methylation decreases in aging but not in immortal cells. Science 220:1055–1057PubMedCrossRefGoogle Scholar
  105. 105.
    Sakatani T, Kaneda A, Iacobuzio-Donahue CA et al (2005) Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science 307:1976–1978PubMedCrossRefGoogle Scholar
  106. 106.
    Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102:10604–10609PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Rakyan V, Whitelaw E (2003) Transgenerational epigenetic inheritance. Curr Biol 13:R6PubMedCrossRefGoogle Scholar
  108. 108.
    Pembrey ME, Bygren LO, Kaati G et al (2006) Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 14:159–166PubMedCrossRefGoogle Scholar
  109. 109.
    Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 10:682–688PubMedCrossRefGoogle Scholar
  110. 110.
    Herceg Z (2007) Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis 22(2):91–103PubMedCrossRefGoogle Scholar
  111. 111.
    Mazzio EA, Soliman KF (2012) Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics 7(2):119–130PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Liyanage VR, Jarmasz JS, Murugeshan N et al (2014) DNA modifications: function and applications in normal and disease States. Biology (Basel) 3(4):670–723Google Scholar
  113. 113.
    Gallou-Kabani C, Junien C (2005) Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic. Diabetes 54(7):1899–1906PubMedCrossRefGoogle Scholar
  114. 114.
    Szarc vel Szic K, Declerck K, Vidaković M et al (2015) From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics 7(1):33PubMedCrossRefGoogle Scholar
  115. 115.
    Verma M (2012) Cancer control and prevention by nutrition and epigenetic approaches. Antioxid Redox Signal 17(2):355–364PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Kanwal R, Gupta S (2010) Epigenetics and cancer. J Appl Physiol 109(2):598–605PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Rönn T, Volkov P, Davegårdh C et al (2013) A six month exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 9(6):e1003572PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Nitert MD, Dayeh T, Volkov P et al (2012) Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 61(12):3322–3332PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ronti T, Lupattelli G, Mannarino E (2006) The endocrine function of adipose tissue: an update. Clin Endocrinol (Oxf) 64(4):355–365Google Scholar
  120. 120.
    Ntanasis-Stathopoulos J, Tzanninis JG et al (2013) Epigenetic regulation on gene expression induced by physical exercise. J Musculoskelet Neuronal Interact 13(2):133–146PubMedGoogle Scholar
  121. 121.
    Radom-Aizik S, Zaldivar F Jr, Oliver S et al (2010) Evidence for microRNA involvement in exercise-associated neutrophil gene expression changes. J Appl Physiol 109(1):252–261PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Sanchis-Gomar F, Garcia-Gimenez JL, Perez-Quilis C et al (2012) Physical exercise as an epigenetic modulator: Eustress, the “positive stress” as an effector of gene expression. J Strength Cond Res 26(12):3469–3472PubMedCrossRefGoogle Scholar
  123. 123.
    Kanherkar RR, Bhatia-Dey N, Csoka AB (2014) Epigenetics across the human lifespan. Front Cell Dev Biol 2:49PubMedPubMedCentralGoogle Scholar
  124. 124.
    Nelson WG, Demarzo AM, Yegnasubramanian S (2014) The diet as a cause of human prostate cancer. Cancer Treat Res 159:51–68PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Ponomarev I (2013) Epigenetic control of gene expression in the alcoholic brain. Alcohol Res 35(1):69–76PubMedPubMedCentralGoogle Scholar
  126. 126.
    Steenaard RV, Ligthart S, Stolk L et al (2015) Tobacco smoking is associated with methylation of genes related to coronary artery disease. Clin Epigenetics 7(1):54PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Ross SA, Milner JA (2007) Epigenetic modulation and cancer: effect of metabolic syndrome? Am J Clin Nutr 86(3):s872–s877PubMedGoogle Scholar
  128. 128.
    Hong T, Nakagawa T, Pan W et al (2004) Isoflavones stimulate estrogen receptor-mediated core histone acetylation. Biochem Biophys Res Commun 317(1):259–264PubMedCrossRefGoogle Scholar
  129. 129.
    Fang MZ, Chen D, Sun Y et al (2005) Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11:7033–7041PubMedCrossRefGoogle Scholar
  130. 130.
    Li Y, Liu L, Andrews LG et al (2009) Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms. Int J Cancer 125(2):286–296PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Majid S, Dar AA, Ahmad AE et al (2009) BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis 30(4):662–670PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Majid S, Dar AA, Shahryari V et al (2009) Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-Cell translocation gene 3 in prostate cancer. Cancer 116(1):66–76Google Scholar
  133. 133.
    Majid S, Kikuno N, Nelles J et al (2008) Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res 68(8):2736–2744PubMedCrossRefGoogle Scholar
  134. 134.
    Kikuno N, Shiina H, Urakami S et al (2008) Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer 123(3):552–560PubMedCrossRefGoogle Scholar
  135. 135.
    Li Y, Vanden Boom TG 2nd, Kong D et al (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69(16):6704–6712PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Fang MZ, Jin Z, Wang Y et al (2005) Promoter hypermethylation and inactivation of O (6)-methylguanine-DNA methyltransferase in esophageal squamous cell carcinomas and its reactivation in cell lines. Int J Oncol 26:615–622PubMedGoogle Scholar
  137. 137.
    Fang M, Chen D, Yang CS (2007) Dietary polyphenols may affect DNA methylation. J Nutr 137(1 Suppl):223S–228SPubMedGoogle Scholar
  138. 138.
    Howitz KT, Bitterman KJ, Cohen HY et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196PubMedCrossRefGoogle Scholar
  139. 139.
    Wood JG, Rogina B, Lavu S et al (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430(7000):686–689PubMedCrossRefGoogle Scholar
  140. 140.
    Lee WJ, Shim JY, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68(4):1018–1030PubMedCrossRefGoogle Scholar
  141. 141.
    Lea MA, Randolph VM, Patel M (1999) Increased acetylation of histones induced by diallyl disulfide and structurally related molecules. Int J Oncol 15(2):347–352PubMedGoogle Scholar
  142. 142.
    Lea MA, Randolph VM, Lee JE et al (2001) Induction of histone acetylation in mouse erythroleukemia cells by some organosulfur compounds including allyl isothiocyanate. Int J Cancer 92(6):784–789PubMedCrossRefGoogle Scholar
  143. 143.
    Druesne N, Pagniez A, Mayeur C et al (2004) Diallyl disulfide (DADS) increases histone acetylation and p21(waf1/cip1) expression in human colon tumor cell lines. Carcinogenesis 25(7):1227–1236PubMedCrossRefGoogle Scholar
  144. 144.
    Nian H, Delage B, Pinto JT (2008) Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF1 promoter. Carcinogenesis 29(9):1816–1824PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Lee JY, Kim HS, Song YS (2012) Genistein as a potential anticancer agent against ovarian cancer. J Tradit Complement Med 2(2):96–104PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Lea MA, Randolph VM (2001) Induction of histone acetylation in rat liver and hepatoma by organosulfur compounds including diallyl disulfide. Anticancer Res 21(4A):2841–2845PubMedGoogle Scholar
  147. 147.
    Sbardella G, Castellano S, Vicidomini C et al (2008) Identification of long chain alkylidenemalonates as novel small molecule modulators of histone acetyltransferases. Bioorg Med Chem Lett 18(9):2788–2792PubMedCrossRefGoogle Scholar
  148. 148.
    Mai A, Rotili D, Tarantino D et al (2006) Small-molecule inhibitors of histone acetyltransferase activity: identification and biological properties. J Med Chem 49(23):6897–6907PubMedCrossRefGoogle Scholar
  149. 149.
    Balasubramanyam K, Swaminathan V, Ranganathan A et al (2003) Small molecule modulators of histone acetyltransferase p300. J Biol Chem 278(21):19134–19140PubMedCrossRefGoogle Scholar
  150. 150.
    Sun Y, Jiang X, Chen S et al (2006) Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett 580(18):4353–4356PubMedCrossRefGoogle Scholar
  151. 151.
    Eliseeva ED, Valkov V, Jung M et al (2007) Characterization of novel inhibitors of histone acetyltransferases. Mol Cancer Ther 6(9):2391–2398PubMedCrossRefGoogle Scholar
  152. 152.
    Chandregowda V, Kush A, Reddy GC (2009) Synthesis of benzamide derivatives of anacardic acid and their cytotoxic activity. Eur J Med Chem 44(6):2711–2719PubMedCrossRefGoogle Scholar
  153. 153.
    Singh N, Misra K (2009) Computational screening of molecular targets in Plasmodium for novel non-resistant anti-malarial drugs. Bioinformation 3(6):255–262PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Marcu MG, Jung YJ, Lee S et al (2006) Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem 2(2):169–174PubMedCrossRefGoogle Scholar
  155. 155.
    Kang J, Chen J, Shi Y et al (2005) Curcumin-induced histone hypoacetylation: the role of reactive oxygen species. Biochem Pharmacol 69(8):1205–1213PubMedCrossRefGoogle Scholar
  156. 156.
    Cui L, Miao J, Furuya T et al (2007) PfGCN5-mediated histone H3 acetylation plays a key role in gene expression in Plasmodium falciparum. Eukaryot Cell 6(7):1219–1227PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Sng JC, Taniura H, Yoneda Y (2006) Histone modifications in kainate-induced status epilepticus. Eur J Neurosci 23(5):1269–1282PubMedCrossRefGoogle Scholar
  158. 158.
    Chiu J, Khan ZA, Farhangkhoee H et al (2009) Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-kappaB. Nutrition 25(9):964–972PubMedCrossRefGoogle Scholar
  159. 159.
    Tikoo K, Meena RL, Kabra DG et al (2008) Change in post-translational modifications of histone H3, heat-shock protein-27 and MAP kinase p38 expression by curcumin in streptozotocin-induced type I diabetic nephropathy. Br J Pharmacol 153(6):1225–1231PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Li HL, Liu C, de CG et al (2008) Curcumin prevents and reverses murine cardiac hypertrophy. J Clin Invest 118(3):879–893PubMedPubMedCentralGoogle Scholar
  161. 161.
    Morimoto T, Sunagawa Y, Kawamura T et al (2008) The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest 118(3):868–878PubMedPubMedCentralGoogle Scholar
  162. 162.
    Liu HL, Chen Y, Cui GH et al (2005) Curcumin, a potent anti-tumor reagent, is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation. Acta Pharmacol Sin 26(5):603–609PubMedCrossRefGoogle Scholar
  163. 163.
    Chen Y, Shu W, Chen W et al (2007) Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin Pharmacol Toxicol 101(6):427–433PubMedCrossRefGoogle Scholar
  164. 164.
    Bora-Tatar G, Dayangac-Erden D, Demir AS et al (2009) Molecular modifications on carboxylic acid derivatives as potent histone deacetylase inhibitors: activity and docking studies. Bioorg Med Chem 17(14):5219–5228PubMedCrossRefGoogle Scholar
  165. 165.
    Liu Z, Xie Z, Jones W, Pavlovicz RE et al (2009) Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett 19(3):706–709PubMedCrossRefGoogle Scholar
  166. 166.
    Kuck D, Singh N, Lyko F et al (2010) Novel and selective DNA methyltransferase inhibitors: docking-based virtual screening and experimental evaluation. Bioorg Med Chem 18(2):822–829PubMedCrossRefGoogle Scholar
  167. 167.
    Choi KC, Jung MG, Lee YH et al (2009) Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res 69(2):583–592PubMedCrossRefGoogle Scholar
  168. 168.
    Fang MZ, Wang Y, Ai N et al (2003) Tea polyphenol(-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63(22):7563–7570PubMedGoogle Scholar
  169. 169.
    Nair S, Hebbar V, Shen G et al (2008) Synergistic effects of a combination of dietary factors sulforaphane and (-) epigallocatechin-3-gallate in HT-29 AP-1 human colon carcinoma cells. Pharm Res 25(2):387–399PubMedCrossRefGoogle Scholar
  170. 170.
    Gao Z, Xu Z, Hung MS et al (2009) Promoter demethylation of WIF-1 by epigallocatechin-3-gallate in lung cancer cells. Anticancer Res 29(6):2025–2030PubMedGoogle Scholar
  171. 171.
    Kato K, Long NK, Makita H et al (2008) Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. Br J Cancer 99(4):647–654PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Balasubramanian S, Adhikary G, Eckert RL (2010) The Bmi-1 polycomb protein antagonizes the (-)-epigallocatechin-3-gallate-dependent suppression of skin cancer cell survival. Carcinogenesis 31(3):496–503PubMedCrossRefGoogle Scholar
  173. 173.
    Pandey M, Shukla S, Gupta S (2010) Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer 126(11):2520–2533PubMedPubMedCentralGoogle Scholar
  174. 174.
    Murugan RS, Uchida K, Hara Y, Nagini S (2008 Oct) Black tea polyphenols modulate xenobiotic-metabolizing enzymes, oxidative stress and adduct formation in a rat hepatocarcinogenesis model. Free Radic Res 42(10):873–84Google Scholar
  175. 175.
    Wang LG, Beklemisheva A, Liu XM et al (2007) Dual action on promoter demethylation and chromatin by an isothiocyanate restored GSTP1 silenced in prostate cancer. Mol Carcinog 46(1):24–31PubMedCrossRefGoogle Scholar
  176. 176.
    Ma X, Fang Y, Beklemisheva A et al (2006) Phenylhexyl isothiocyanate inhibits histone deacetylases and remodels chromatins to induce growth arrest in human leukemia cells. Int J Oncol 28(5):1287–1293PubMedGoogle Scholar
  177. 177.
    Wang LG, Liu XM, Fang Y et al (2008) De-repression of the p21 promoter in prostate cancer cells by an isothiocyanate via inhibition of HDACs and c-Myc. Int J Oncol 33(2):375–380PubMedGoogle Scholar
  178. 178.
    Wang RH, Zheng Y, Kim HS et al (2008) Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell 32(1):11–20PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Wang RH, Sengupta K, Li C et al (2008) Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14(4):312–323PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Wilkinson JT, Morse MA, Kresty LA et al (1995) Effect of alkyl chain length on inhibition of N nitrosomethylbenzylamine-induced esophageal tumorigenesis and DNA methylation by isothiocyanates. Carcinogenesis 16(5):1011–1015PubMedCrossRefGoogle Scholar
  181. 181.
    Schwab M, Reynders V, Loitsch S et al (2008) The dietary histone deacetylase inhibitor sulforaphane induces human beta-defensin-2 in intestinal epithelial cells. Immunology 125(2):241–251PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Paluszczak J, Krajka-Kuźniak V, Baer-Dubowska W (2010) The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett 192(2):119–125PubMedCrossRefGoogle Scholar
  183. 183.
    Myzak MC, Karplus PA, Chung FL et al (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64(16):5767–5774PubMedCrossRefGoogle Scholar
  184. 184.
    Yang SR, Wright J, Bauter M et al (2007) Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. Am J Physiol Lung Cell Mol Physiol 292(2):L567–L576PubMedCrossRefGoogle Scholar
  185. 185.
    Yang J, Kong X, Martins-Santos ME et al (2009) Activation of SIRT1 by resveratrol represses transcription of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) by deacetylating hepatic nuclear factor 4alpha. J Biol Chem 284(40):27042–27053PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Stefanska B, Rudnicka K, Bednarek A et al (2010) Hypomethylation and induction of retinoic acid receptor beta 2 by concurrent action of adenosine analogues and natural compounds in breast cancer cells. Eur J Pharmacol 638(1–3):47–53PubMedCrossRefGoogle Scholar
  187. 187.
    King-Batoon A, Leszczynska JM, Klein CB (2008) Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ Mol Mutagen 49(1):36–45PubMedCrossRefGoogle Scholar
  188. 188.
    Tan S, Wang C, Lu C et al (2009) Quercetin is able to demethylate the p16INK4a gene promoter. Chemotherapy 55(1):6–10PubMedCrossRefGoogle Scholar
  189. 189.
    Chakrabarti M, Khandkar M, Banik NL et al (2012) Alterations in expression of specific microRNAs by combination of 4-HPR and EGCG inhibited growth of human malignant neuroblastoma cells. Brain Res 1454:1–13PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Wu H, Huang M, Liu Y et al (2014) Luteolin induces apoptosis by up-regulating miR-34a in human gastric cancer cells. Technol Cancer Res Treat 14(6):747–755, PubMed PMID: 24988056PubMedGoogle Scholar
  191. 191.
    Gandhy SU, Kim K, Larsen L et al (2012) Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs. BMC Cancer 12:564PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Saini S, Arora S, Majid S et al (2011) Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev Res (Phila) 4:1698–1709PubMedCentralCrossRefGoogle Scholar
  193. 193.
    Zhang J, Du Y, Wu C et al (2010) Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186n signaling pathway. Oncol Rep 24:1217–1223PubMedGoogle Scholar
  194. 194.
    Gao SM, Yang JJ, Chen CQ et al (2012) Pure curcumin decreases the expression of WT1 by upregulation of miR-15a and miR-16-1 in leukemic cells. J Exp Clin Cancer Res 31:2PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Sun M, Estrov Z, Ji Y et al (2008) Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 7(3):464–473PubMedCrossRefGoogle Scholar
  196. 196.
    Chiyomaru T, Yamamura S, Zaman MS et al (2012) Genistein suppresses prostate cancer growth through inhibition of oncogenic microRNA-151. PLoS One 7:e43812PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Parker LP, Taylor DD, Kesterson J et al (2009) Modulation of microRNA associated with ovarian cancer cells by genistein. Eur J Gynaecol Oncol 30:616–621PubMedGoogle Scholar
  198. 198.
    Parker JS, Parizotto EA, Wang M et al (2009) Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein. Mol Cell 33(2):204–214PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Dhar S, Hicks C, Levenson AS (2011) Resveratrol and prostate cancer: promising role for microRNAs. Mol Nutr Food Res 55:1219–1229PubMedCrossRefGoogle Scholar
  200. 200.
    Sheth S, Jajoo S, Kaur T et al (2012) Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS One 7:e51655PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Tili E, Michaille JJ, Alder H et al (2010) Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFbeta signaling pathway in SW480 cells. Biochem Pharmacol 80:2057–2065PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Jiang L, Huang Q, Chang J et al (2011) MicroRNA HSA-miR-125a-5p induces apoptosis by activating p53 in lung cancer cells. Exp Lung Res 37(7):387–398PubMedCrossRefGoogle Scholar
  203. 203.
    Chakrabarti M, Banik NL, Ray SK (2013) miR-138 overexpression is more powerful than hTERT knockdown to potentiate apigenin for apoptosis in neuroblastoma in vitro and in vivo. Exp Cell Res 319(10):1575–1585PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Wen XY, Wu SY, Li ZQ et al (2009) Ellagitannin (BJA3121), an anti-proliferative natural polyphenol compound, can regulate the expression of MiRNAs in HepG2 cancer cells. Phytother Res 23(6):778–784PubMedCrossRefGoogle Scholar
  205. 205.
    Nandakumar V, Vaid M, Katiyar SK (2011) (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis 32(4):537–544PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Li Y, Yuan YY, Meeran SM et al (2010) Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells. Mol Cancer 9:274PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Thakur VS, Gupta K, Gupta S (2012) Green tea polyphenols causes cell cycle arrest and apoptosis in prostate cancer cells by suppressing class I histone deacetylases. Carcinogenesis 33(2):377–384PubMedCrossRefGoogle Scholar
  208. 208.
    Choudhury SR, Balasubramanian S, Chew YC et al (2011) (-)-Epigallocatechin-3-gallate and DZNep reduce polycomb protein level via a proteasome-dependent mechanism in skin cancer cells. Carcinogenesis 32(10):1525–1532PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Banerjee S, Li Y, Wang Z et al (2008) Multi-targeted therapy of cancer by genistein. Cancer Lett 269(2):226–242PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Day JK, Bauer AM, DesBordes C et al (2002) Genistein alters methylation patterns in mice. J Nutr 132(8 Suppl):2419S–2423SPubMedGoogle Scholar
  211. 211.
    Majid S, Dar AA, Saini S et al (2010) Regulation of minichromosome maintenance gene family by microRNA-1296 and genistein in prostate cancer. Cancer Res 70(7):2809–2818PubMedCrossRefGoogle Scholar
  212. 212.
    Basak S, Pookot D, Noonan EJ et al (2008) Genistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function. Mol Cancer Ther 7(10):3195–3202PubMedCrossRefGoogle Scholar
  213. 213.
    Majid S, Dar AA, Shahryari V et al (2010) Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-Cell translocation gene 3 in prostate cancer. Cancer 116(1):66–76PubMedPubMedCentralGoogle Scholar
  214. 214.
    Sun Q, Cong R, Yan H et al (2009) Genistein inhibits growth of human uveal melanoma cells and affects microRNA-27a and target gene expression. Oncol Rep 22(3):563–567PubMedGoogle Scholar
  215. 215.
    Teiten MH, Eifes S, Dicato M et al (2010) Curcumin-the paradigm of a multi-target natural compound with applications in cancer prevention and treatment. Toxins (Basel) 2(1):128–162CrossRefGoogle Scholar
  216. 216.
    Fu S, Kurzrock R (2010) Development of curcumin as an epigenetic agent. Cancer 116(20):4670–4676PubMedCrossRefGoogle Scholar
  217. 217.
    Medina-Franco JL, Caulfield T (2011) Advances in the computational development of DNA methyltransferase inhibitors. Drug Discov Today 16(9-10):418–425PubMedCrossRefGoogle Scholar
  218. 218.
    Dekker FJ, Haisma HJ (2009) Histone acetyl transferases as emerging drug targets. Drug Discov Today 14(19-20):942–948PubMedCrossRefGoogle Scholar
  219. 219.
    Ali S, Banerjee S, Logna F et al (2012) Inactivation of Ink4a/Arf leads to deregulated expression of miRNAs in K-Ras transgenic mouse model of pancreatic cancer. J Cell Physiol 227(10):3373–3380PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Rajendran P, Ho E, Williams DE et al (2011) Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clin Epigenetics 3(1):4PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Boily G, He XH, Pearce B et al (2009) SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene 28(32):2882–2893PubMedCrossRefGoogle Scholar
  222. 222.
    Kai L, Samuel SK, Levenson AS (2010) Resveratrol enhances p53 acetylation an apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. Int J Cancer 126(7):1538–1548PubMedGoogle Scholar
  223. 223.
    Traka M, Gasper AV, Smith JA, Hawkey CJ, Bao Y, Mithen RF (2005 Aug) Transcriptome analysis of human colon Caco-2 cells exposed to sulforaphane. J Nutr 135(8):1865–72Google Scholar
  224. 224.
    Meeran SM, Patel SN, Tollefsbol TO (2010) Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One 5(7):e11457PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Myzak MC, Dashwood WM, Orner GA et al (2006) Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB J 20(3):506–508PubMedPubMedCentralGoogle Scholar
  226. 226.
    Pledgie-Tracy A, Sobolewski MD, Davidson NE (2007) Sulforaphane induces celltype-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther 6(3):1013–1021PubMedCrossRefGoogle Scholar
  227. 227.
    Pandey M, Kaur P, Shukla S et al (2012) Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: in vitro and in vivo study. Mol Carcinog 51(12):952–962PubMedCrossRefGoogle Scholar
  228. 228.
    Paredes-Gonzalez X, Fuentes F et al (2014) Apigenin reactivates Nrf2 anti-oxidative stress signaling in mouse skin epidermal JB6 P + cells through epigenetics modifications. AAPS J 16(4):727–735PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Mohammed SI, Springfield S, Das R (2012) Role of epigenetics in cancer health disparities. Methods Mol Biol 863:395–410PubMedCrossRefGoogle Scholar
  230. 230.
    Signorello LB, Schlundt DG, Cohen SS et al (2007) Comparing diabetes prevalence between African Americans and Whites of similar socioeconomic status. Am J Public Health 97(12):2260–2267PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Tsang WP, Kwok TT (2010) Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem 21:140–146PubMedCrossRefGoogle Scholar
  232. 232.
    Sakurai MA, Ozaki Y, Okuzaki D et al (2014) Gefitinib and luteolin cause growth arrest of human prostate cancer PC-3 cells via inhibition of cyclin G-associated kinase and induction of miR-630. PLoS One 9(6):e100124PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of UrologyCase Western Reserve UniversityClevelandUSA

Personalised recommendations