Abstract
A new experimental platform that combines far-field high-energy diffraction microscopy (HEDM) and in situ planar biaxial loading is presented. The HEDM X-ray diffraction technique, which allows for non-destructive 3D microstructure measurements via serial reconstructions of 2D diffraction patterns, is briefly reviewed. Design attributes of a custom planar biaxial load frame and a new cruciform sample geometry for in situ HEDM experimentation are presented in detail. During the HEDM measurements, this new planar biaxial platform is capable of arbitrary combinations of tension and compression loading for studying full plane stress yield loci while localized gage stresses up to 1.8 GPa are generated with minimal influence from the cruciform geometry stress concentrations. The combination of these experimental capabilities demonstrates an ability to solve a long-standing problem of planar biaxial experimentation on nonlinear materials with unknown constitutive relations: how to measure the gage stress. Finite element results for isotropic elasticity are compared with classical plane stress analysis and digital image correlation (DIC) measurements, and all were found to be in good agreement.
Keywords
- Multiaxial
- Experimental mechanics
- Cruciform specimen design
- Plane stress experiment
- X-ray diffraction
This is a preview of subscription content, access via your institution.
Buying options









Abbreviations
- δ 11 :
-
Applied grip displacement in 11 direction
- δ 22 :
-
Applied grip displacement in 22 direction
- λ :
-
δ 11 /δ 22
- ε 11s :
-
FEA simulation gage strain in 11 direction
- ε 22s :
-
FEA simulation gage strain in 22 direction
- λ s :
-
ε 11s /ε 22s
- ε 11a :
-
Analytic formulation gage strain in 11 direction
- ε 22a :
-
Analytic formulation gage strain in 22 direction
- λ a :
-
ε 11a /ε 22a
- ν :
-
Poisson’s ratio
- E :
-
Young’s modulus
- ε 11 :
-
Strain in 11 direction
- ε 22 :
-
Strain in 22 direction
- σ 11 :
-
Stress in 11 direction
- σ 22 :
-
Stress in 22 direction
References
Metallic Materials—Sheet and Strip—Biaxial Tensile Testing Method Using a Cruciform Test Piece. ISO 16842:2014
Abu-Farha, F., Hector Jr., L.G., Khraisheh, M.: Cruciform-shaped specimens for elevated temperature biaxial testing of lightweight materials. J. O. M. 61(8), 48–56 (2009)
Demmerle, S., Boehler, J.P.: Optimal design of biaxial tensile cruciform specimens. J. Mech. Phys. Solids 41(1), 143–181 (1993)
Hanabusa, Y., Takizawa, H., Kuwabara, T.: Numerical verification of a biaxial tensile test method using a cruciform specimen. J. Mater. Process. Technol. 213(6), 961–970 (2013)
Hu, J.-J., Chen, G.-W., Liu, Y.-C., Hsu, S.-S.: Influence of specimen geometry on the estimation of the planar biaxial mechanical properties of cruciform specimens. Exp. Mech. 54(4), 615–631 (2014)
Kuwabara, T., Kuroda, M., Tvergaard, V., Nomura, K.: Use of abrupt strain path change for determining subsequent yield surface: experimental study with metal sheets. Acta Mater. 48(9), 2071–2079 (2000)
Makinde, A., Thibodeau, L., Neale, K.W.: Development of an apparatus for biaxial testing using cruciform specimens. Exp. Mech. 32(2), 138–144 (1992)
Makris, A., Vandenbergh, T., Ramault, C., Van Hemelrijck, D., Lamkanfi, E., Van Paepegem, W.: Shape optimisation of a biaxially loaded cruciform specimen. Polym. Test. 29(2), 216–223 (2010)
Shiratori, E., Ikegami, K.: Experimental study of the subsequent yield surface by using cross-shaped specimens. J. Mech. Phys. Solids 16(6), 373–394 (1968)
Tiernan, P., Hannon, A.: Design optimisation of biaxial tensile test specimen using finite element analysis. Int. J. Mater. Form. 7(1), 117–123 (2014)
Yu, Y., Wan, M., Wu, X.-D., Zhou, X.-B.: Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM. J. Mater. Process. Technol. 123(1), 67–70 (2002)
Kulawinski, D., Nagel, K., Henkel, S., Hübner, P., Fischer, H., Kuna, M., Biermann, H.: Characterization of stress–strain behavior of a cast TRIP steel under different biaxial planar load ratios. Eng. Fract. Mech. 78(8), 1684–1695 (2011)
Kulawinski, D., Ackermann, S., Seupel, A., Lippmann, T., Henkel, S., Kuna, M., Weidner, A., Biermann, H.: Deformation and strain hardening behavior of powder metallurgical TRIP steel under quasi-static biaxial-planar loading. Mater. Sci. Eng. A 642, 317–329 (2015)
Hommer, G.M., Stebner, A.P.: Development of a specimen for in-situ diffraction planar biaxial experiments. In: Beese, A.M., Zehnder, A.T., Xia, S. (eds.) Fracture, Fatigue, Failure and Damage Evolution, vol. 8, pp. 45–50. Springer International Publishing, Cham (2016)
Lienert, U., Li, S.F., Hefferan, C.M., Lind, J., Suter, R.M., Bernier, J.V., Barton, N.R., Brandes, M.C., Mills, M.J., Miller, M.P., Jakobsen, B., Pantleon, W.: High-energy diffraction microscopy at the advanced photon source. J. O. M. 63(7), 70–77 (2011)
Lienert, U., Brandes, M.C., Bernier, J.V., Weiss, J., Shastri, S.D., Mills, M.J., Miller, M.P.: In situ single-grain peak profile measurements on Ti–7Al during tensile deformation. Mater. Sci. Eng. A 524(1–2), 46–54 (2009)
Schuren, J.C., Shade, P.A., Bernier, J.V., Li, S.F., Blank, B., Lind, J., Kenesei, P., Lienert, U., Suter, R.M., Turner, T.J., Dimiduk, D.M., Almer, J.: New opportunities for quantitative tracking of polycrystal responses in three dimensions. Curr. Opin. Solid State Mater. Sci. 19(4), 235–244 (2015)
Pagan, D.C., Miller, M.P.: Connecting heterogeneous single slip to diffraction peak evolution in high-energy monochromatic X-ray experiments. J. Appl. Crystallogr. 47(3), 887–898 (2014)
Aydıner, C.C., Bernier, J.V., Clausen, B., Lienert, U., Tomé, C.N., Brown, D.W.: Evolution of stress in individual grains and twins in a magnesium alloy aggregate. Phys. Rev. B 80(2), 024113 (2009)
FABLE: https://sourceforge.net/projects/fable/. Accessed 01 Mar 2016
HEXRD: https://github.com/praxes/hexrd. Accessed 01 Mar 2016
Sharma, H., Huizenga, R.M., Offerman, S.E.: A fast methodology to determine the characteristics of thousands of grains using three-dimensional X-ray diffraction. I. Overlapping diffraction peaks and parameters of the experimental setup. J. Appl. Crystallogr. 45(4), 693–704 (2012)
Sharma, H., Huizenga, R.M., Offerman, S.E.: A fast methodology to determine the characteristics of thousands of grains using three-dimensional X-ray diffraction. II. Volume, centre-of-mass position, crystallographic orientation and strain state of grains. J. Appl. Crystallogr. 45(4), 705–718 (2012)
Bernier, J.V., Barton, N.R., Lienert, U., Miller, M.P.: Far-field high-energy diffraction microscopy: a tool for intergranular orientation and strain analysis. J. Strain Anal. Eng. Des. 46(7), 527–547 (2011)
Advanced Photon Source: “MIDAS,” MIDAS, microstructural imaging using diffraction analysis software. https://www1.aps.anl.gov/science/scientific-software/midas. Accessed 01 Mar 2016
Dassault Systems: “Abaqus,” Abaqus 6.13 online documentation, 02-Apr-2013. http://129.97.46.200:2080/v6.13/. Accessed 01 Mar 2016
Van Petegem, S., Wagner, J., Panzner, T., Upadhyay, M.V., Trang, T.T.T., Van Swygenhoven, H.: In-situ neutron diffraction during biaxial deformation. Acta Mater. 105, 404–416 (2016)
Williams, M.L.: On the stress distribution at the base of a stationary crack. J. Appl. Mech. 24, 111–114 (1957)
Irwin, G.R.: Analysis of stresses and strains near the end of a crack transversing a plate. J. Appl. Mech. 24, 361–364 (1957)
Sanford, R.J.: A critical re-examination of the westergaard method for solving opening-mode crack problems. Mech. Res. Commun. 6(5), 289–294 (1979)
Barber, J.R.: Plane strain and plane stress. In: Elasticity, 3rd edn, pp. 40–41. Springer, New York (2010). Chapter 3, Section 2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 The Society for Experimental Mechanics, Inc.
About this paper
Cite this paper
Hommer, G.M., Park, J.S., Collins, P.C., Pilchak, A.L., Stebner, A.P. (2017). A New In Situ Planar Biaxial Far-Field High Energy Diffraction Microscopy Experiment. In: Yoshida, S., Lamberti, L., Sciammarella, C. (eds) Advancement of Optical Methods in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-41600-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-41600-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41599-4
Online ISBN: 978-3-319-41600-7
eBook Packages: EngineeringEngineering (R0)