Skip to main content

A New In Situ Planar Biaxial Far-Field High Energy Diffraction Microscopy Experiment

Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


A new experimental platform that combines far-field high-energy diffraction microscopy (HEDM) and in situ planar biaxial loading is presented. The HEDM X-ray diffraction technique, which allows for non-destructive 3D microstructure measurements via serial reconstructions of 2D diffraction patterns, is briefly reviewed. Design attributes of a custom planar biaxial load frame and a new cruciform sample geometry for in situ HEDM experimentation are presented in detail. During the HEDM measurements, this new planar biaxial platform is capable of arbitrary combinations of tension and compression loading for studying full plane stress yield loci while localized gage stresses up to 1.8 GPa are generated with minimal influence from the cruciform geometry stress concentrations. The combination of these experimental capabilities demonstrates an ability to solve a long-standing problem of planar biaxial experimentation on nonlinear materials with unknown constitutive relations: how to measure the gage stress. Finite element results for isotropic elasticity are compared with classical plane stress analysis and digital image correlation (DIC) measurements, and all were found to be in good agreement.


  • Multiaxial
  • Experimental mechanics
  • Cruciform specimen design
  • Plane stress experiment
  • X-ray diffraction

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-41600-7_7
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-41600-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6
Fig. 7.7
Fig. 7.8
Fig. 7.9


δ 11 :

Applied grip displacement in 11 direction

δ 22 :

Applied grip displacement in 22 direction

λ :

δ 11 22

ε 11s :

FEA simulation gage strain in 11 direction

ε 22s :

FEA simulation gage strain in 22 direction

λ s :

ε 11s 22s

ε 11a :

Analytic formulation gage strain in 11 direction

ε 22a :

Analytic formulation gage strain in 22 direction

λ a :

ε 11a 22a

ν :

Poisson’s ratio

E :

Young’s modulus

ε 11 :

Strain in 11 direction

ε 22 :

Strain in 22 direction

σ 11 :

Stress in 11 direction

σ 22 :

Stress in 22 direction


  1. Metallic Materials—Sheet and Strip—Biaxial Tensile Testing Method Using a Cruciform Test Piece. ISO 16842:2014

    Google Scholar 

  2. Abu-Farha, F., Hector Jr., L.G., Khraisheh, M.: Cruciform-shaped specimens for elevated temperature biaxial testing of lightweight materials. J. O. M. 61(8), 48–56 (2009)

    Google Scholar 

  3. Demmerle, S., Boehler, J.P.: Optimal design of biaxial tensile cruciform specimens. J. Mech. Phys. Solids 41(1), 143–181 (1993)

    CrossRef  Google Scholar 

  4. Hanabusa, Y., Takizawa, H., Kuwabara, T.: Numerical verification of a biaxial tensile test method using a cruciform specimen. J. Mater. Process. Technol. 213(6), 961–970 (2013)

    CrossRef  Google Scholar 

  5. Hu, J.-J., Chen, G.-W., Liu, Y.-C., Hsu, S.-S.: Influence of specimen geometry on the estimation of the planar biaxial mechanical properties of cruciform specimens. Exp. Mech. 54(4), 615–631 (2014)

    CrossRef  Google Scholar 

  6. Kuwabara, T., Kuroda, M., Tvergaard, V., Nomura, K.: Use of abrupt strain path change for determining subsequent yield surface: experimental study with metal sheets. Acta Mater. 48(9), 2071–2079 (2000)

    CrossRef  Google Scholar 

  7. Makinde, A., Thibodeau, L., Neale, K.W.: Development of an apparatus for biaxial testing using cruciform specimens. Exp. Mech. 32(2), 138–144 (1992)

    CrossRef  Google Scholar 

  8. Makris, A., Vandenbergh, T., Ramault, C., Van Hemelrijck, D., Lamkanfi, E., Van Paepegem, W.: Shape optimisation of a biaxially loaded cruciform specimen. Polym. Test. 29(2), 216–223 (2010)

    CrossRef  Google Scholar 

  9. Shiratori, E., Ikegami, K.: Experimental study of the subsequent yield surface by using cross-shaped specimens. J. Mech. Phys. Solids 16(6), 373–394 (1968)

    CrossRef  Google Scholar 

  10. Tiernan, P., Hannon, A.: Design optimisation of biaxial tensile test specimen using finite element analysis. Int. J. Mater. Form. 7(1), 117–123 (2014)

    CrossRef  Google Scholar 

  11. Yu, Y., Wan, M., Wu, X.-D., Zhou, X.-B.: Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM. J. Mater. Process. Technol. 123(1), 67–70 (2002)

    CrossRef  Google Scholar 

  12. Kulawinski, D., Nagel, K., Henkel, S., Hübner, P., Fischer, H., Kuna, M., Biermann, H.: Characterization of stress–strain behavior of a cast TRIP steel under different biaxial planar load ratios. Eng. Fract. Mech. 78(8), 1684–1695 (2011)

    CrossRef  Google Scholar 

  13. Kulawinski, D., Ackermann, S., Seupel, A., Lippmann, T., Henkel, S., Kuna, M., Weidner, A., Biermann, H.: Deformation and strain hardening behavior of powder metallurgical TRIP steel under quasi-static biaxial-planar loading. Mater. Sci. Eng. A 642, 317–329 (2015)

    CrossRef  Google Scholar 

  14. Hommer, G.M., Stebner, A.P.: Development of a specimen for in-situ diffraction planar biaxial experiments. In: Beese, A.M., Zehnder, A.T., Xia, S. (eds.) Fracture, Fatigue, Failure and Damage Evolution, vol. 8, pp. 45–50. Springer International Publishing, Cham (2016)

    CrossRef  Google Scholar 

  15. Lienert, U., Li, S.F., Hefferan, C.M., Lind, J., Suter, R.M., Bernier, J.V., Barton, N.R., Brandes, M.C., Mills, M.J., Miller, M.P., Jakobsen, B., Pantleon, W.: High-energy diffraction microscopy at the advanced photon source. J. O. M. 63(7), 70–77 (2011)

    Google Scholar 

  16. Lienert, U., Brandes, M.C., Bernier, J.V., Weiss, J., Shastri, S.D., Mills, M.J., Miller, M.P.: In situ single-grain peak profile measurements on Ti–7Al during tensile deformation. Mater. Sci. Eng. A 524(1–2), 46–54 (2009)

    CrossRef  Google Scholar 

  17. Schuren, J.C., Shade, P.A., Bernier, J.V., Li, S.F., Blank, B., Lind, J., Kenesei, P., Lienert, U., Suter, R.M., Turner, T.J., Dimiduk, D.M., Almer, J.: New opportunities for quantitative tracking of polycrystal responses in three dimensions. Curr. Opin. Solid State Mater. Sci. 19(4), 235–244 (2015)

    CrossRef  Google Scholar 

  18. Pagan, D.C., Miller, M.P.: Connecting heterogeneous single slip to diffraction peak evolution in high-energy monochromatic X-ray experiments. J. Appl. Crystallogr. 47(3), 887–898 (2014)

    CrossRef  Google Scholar 

  19. Aydıner, C.C., Bernier, J.V., Clausen, B., Lienert, U., Tomé, C.N., Brown, D.W.: Evolution of stress in individual grains and twins in a magnesium alloy aggregate. Phys. Rev. B 80(2), 024113 (2009)

    CrossRef  Google Scholar 

  20. FABLE: Accessed 01 Mar 2016

  21. HEXRD: Accessed 01 Mar 2016

  22. Sharma, H., Huizenga, R.M., Offerman, S.E.: A fast methodology to determine the characteristics of thousands of grains using three-dimensional X-ray diffraction. I. Overlapping diffraction peaks and parameters of the experimental setup. J. Appl. Crystallogr. 45(4), 693–704 (2012)

    CrossRef  Google Scholar 

  23. Sharma, H., Huizenga, R.M., Offerman, S.E.: A fast methodology to determine the characteristics of thousands of grains using three-dimensional X-ray diffraction. II. Volume, centre-of-mass position, crystallographic orientation and strain state of grains. J. Appl. Crystallogr. 45(4), 705–718 (2012)

    CrossRef  Google Scholar 

  24. Bernier, J.V., Barton, N.R., Lienert, U., Miller, M.P.: Far-field high-energy diffraction microscopy: a tool for intergranular orientation and strain analysis. J. Strain Anal. Eng. Des. 46(7), 527–547 (2011)

    CrossRef  Google Scholar 

  25. Advanced Photon Source: “MIDAS,” MIDAS, microstructural imaging using diffraction analysis software. Accessed 01 Mar 2016

  26. Dassault Systems: “Abaqus,” Abaqus 6.13 online documentation, 02-Apr-2013. Accessed 01 Mar 2016

  27. Van Petegem, S., Wagner, J., Panzner, T., Upadhyay, M.V., Trang, T.T.T., Van Swygenhoven, H.: In-situ neutron diffraction during biaxial deformation. Acta Mater. 105, 404–416 (2016)

    CrossRef  Google Scholar 

  28. Williams, M.L.: On the stress distribution at the base of a stationary crack. J. Appl. Mech. 24, 111–114 (1957)

    MathSciNet  Google Scholar 

  29. Irwin, G.R.: Analysis of stresses and strains near the end of a crack transversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  30. Sanford, R.J.: A critical re-examination of the westergaard method for solving opening-mode crack problems. Mech. Res. Commun. 6(5), 289–294 (1979)

    CrossRef  MATH  Google Scholar 

  31. Barber, J.R.: Plane strain and plane stress. In: Elasticity, 3rd edn, pp. 40–41. Springer, New York (2010). Chapter 3, Section 2

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. P. Stebner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Hommer, G.M., Park, J.S., Collins, P.C., Pilchak, A.L., Stebner, A.P. (2017). A New In Situ Planar Biaxial Far-Field High Energy Diffraction Microscopy Experiment. In: Yoshida, S., Lamberti, L., Sciammarella, C. (eds) Advancement of Optical Methods in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41599-4

  • Online ISBN: 978-3-319-41600-7

  • eBook Packages: EngineeringEngineering (R0)