Skip to main content

A New In Situ Planar Biaxial Far-Field High Energy Diffraction Microscopy Experiment

  • Conference paper
  • First Online:

Abstract

A new experimental platform that combines far-field high-energy diffraction microscopy (HEDM) and in situ planar biaxial loading is presented. The HEDM X-ray diffraction technique, which allows for non-destructive 3D microstructure measurements via serial reconstructions of 2D diffraction patterns, is briefly reviewed. Design attributes of a custom planar biaxial load frame and a new cruciform sample geometry for in situ HEDM experimentation are presented in detail. During the HEDM measurements, this new planar biaxial platform is capable of arbitrary combinations of tension and compression loading for studying full plane stress yield loci while localized gage stresses up to 1.8 GPa are generated with minimal influence from the cruciform geometry stress concentrations. The combination of these experimental capabilities demonstrates an ability to solve a long-standing problem of planar biaxial experimentation on nonlinear materials with unknown constitutive relations: how to measure the gage stress. Finite element results for isotropic elasticity are compared with classical plane stress analysis and digital image correlation (DIC) measurements, and all were found to be in good agreement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

δ 11 :

Applied grip displacement in 11 direction

δ 22 :

Applied grip displacement in 22 direction

λ :

δ 11 22

ε 11s :

FEA simulation gage strain in 11 direction

ε 22s :

FEA simulation gage strain in 22 direction

λ s :

ε 11s 22s

ε 11a :

Analytic formulation gage strain in 11 direction

ε 22a :

Analytic formulation gage strain in 22 direction

λ a :

ε 11a 22a

ν :

Poisson’s ratio

E :

Young’s modulus

ε 11 :

Strain in 11 direction

ε 22 :

Strain in 22 direction

σ 11 :

Stress in 11 direction

σ 22 :

Stress in 22 direction

References

  1. Metallic Materials—Sheet and Strip—Biaxial Tensile Testing Method Using a Cruciform Test Piece. ISO 16842:2014

    Google Scholar 

  2. Abu-Farha, F., Hector Jr., L.G., Khraisheh, M.: Cruciform-shaped specimens for elevated temperature biaxial testing of lightweight materials. J. O. M. 61(8), 48–56 (2009)

    Google Scholar 

  3. Demmerle, S., Boehler, J.P.: Optimal design of biaxial tensile cruciform specimens. J. Mech. Phys. Solids 41(1), 143–181 (1993)

    Article  Google Scholar 

  4. Hanabusa, Y., Takizawa, H., Kuwabara, T.: Numerical verification of a biaxial tensile test method using a cruciform specimen. J. Mater. Process. Technol. 213(6), 961–970 (2013)

    Article  Google Scholar 

  5. Hu, J.-J., Chen, G.-W., Liu, Y.-C., Hsu, S.-S.: Influence of specimen geometry on the estimation of the planar biaxial mechanical properties of cruciform specimens. Exp. Mech. 54(4), 615–631 (2014)

    Article  Google Scholar 

  6. Kuwabara, T., Kuroda, M., Tvergaard, V., Nomura, K.: Use of abrupt strain path change for determining subsequent yield surface: experimental study with metal sheets. Acta Mater. 48(9), 2071–2079 (2000)

    Article  Google Scholar 

  7. Makinde, A., Thibodeau, L., Neale, K.W.: Development of an apparatus for biaxial testing using cruciform specimens. Exp. Mech. 32(2), 138–144 (1992)

    Article  Google Scholar 

  8. Makris, A., Vandenbergh, T., Ramault, C., Van Hemelrijck, D., Lamkanfi, E., Van Paepegem, W.: Shape optimisation of a biaxially loaded cruciform specimen. Polym. Test. 29(2), 216–223 (2010)

    Article  Google Scholar 

  9. Shiratori, E., Ikegami, K.: Experimental study of the subsequent yield surface by using cross-shaped specimens. J. Mech. Phys. Solids 16(6), 373–394 (1968)

    Article  Google Scholar 

  10. Tiernan, P., Hannon, A.: Design optimisation of biaxial tensile test specimen using finite element analysis. Int. J. Mater. Form. 7(1), 117–123 (2014)

    Article  Google Scholar 

  11. Yu, Y., Wan, M., Wu, X.-D., Zhou, X.-B.: Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM. J. Mater. Process. Technol. 123(1), 67–70 (2002)

    Article  Google Scholar 

  12. Kulawinski, D., Nagel, K., Henkel, S., Hübner, P., Fischer, H., Kuna, M., Biermann, H.: Characterization of stress–strain behavior of a cast TRIP steel under different biaxial planar load ratios. Eng. Fract. Mech. 78(8), 1684–1695 (2011)

    Article  Google Scholar 

  13. Kulawinski, D., Ackermann, S., Seupel, A., Lippmann, T., Henkel, S., Kuna, M., Weidner, A., Biermann, H.: Deformation and strain hardening behavior of powder metallurgical TRIP steel under quasi-static biaxial-planar loading. Mater. Sci. Eng. A 642, 317–329 (2015)

    Article  Google Scholar 

  14. Hommer, G.M., Stebner, A.P.: Development of a specimen for in-situ diffraction planar biaxial experiments. In: Beese, A.M., Zehnder, A.T., Xia, S. (eds.) Fracture, Fatigue, Failure and Damage Evolution, vol. 8, pp. 45–50. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  15. Lienert, U., Li, S.F., Hefferan, C.M., Lind, J., Suter, R.M., Bernier, J.V., Barton, N.R., Brandes, M.C., Mills, M.J., Miller, M.P., Jakobsen, B., Pantleon, W.: High-energy diffraction microscopy at the advanced photon source. J. O. M. 63(7), 70–77 (2011)

    Google Scholar 

  16. Lienert, U., Brandes, M.C., Bernier, J.V., Weiss, J., Shastri, S.D., Mills, M.J., Miller, M.P.: In situ single-grain peak profile measurements on Ti–7Al during tensile deformation. Mater. Sci. Eng. A 524(1–2), 46–54 (2009)

    Article  Google Scholar 

  17. Schuren, J.C., Shade, P.A., Bernier, J.V., Li, S.F., Blank, B., Lind, J., Kenesei, P., Lienert, U., Suter, R.M., Turner, T.J., Dimiduk, D.M., Almer, J.: New opportunities for quantitative tracking of polycrystal responses in three dimensions. Curr. Opin. Solid State Mater. Sci. 19(4), 235–244 (2015)

    Article  Google Scholar 

  18. Pagan, D.C., Miller, M.P.: Connecting heterogeneous single slip to diffraction peak evolution in high-energy monochromatic X-ray experiments. J. Appl. Crystallogr. 47(3), 887–898 (2014)

    Article  Google Scholar 

  19. Aydıner, C.C., Bernier, J.V., Clausen, B., Lienert, U., Tomé, C.N., Brown, D.W.: Evolution of stress in individual grains and twins in a magnesium alloy aggregate. Phys. Rev. B 80(2), 024113 (2009)

    Article  Google Scholar 

  20. FABLE: https://sourceforge.net/projects/fable/. Accessed 01 Mar 2016

  21. HEXRD: https://github.com/praxes/hexrd. Accessed 01 Mar 2016

  22. Sharma, H., Huizenga, R.M., Offerman, S.E.: A fast methodology to determine the characteristics of thousands of grains using three-dimensional X-ray diffraction. I. Overlapping diffraction peaks and parameters of the experimental setup. J. Appl. Crystallogr. 45(4), 693–704 (2012)

    Article  Google Scholar 

  23. Sharma, H., Huizenga, R.M., Offerman, S.E.: A fast methodology to determine the characteristics of thousands of grains using three-dimensional X-ray diffraction. II. Volume, centre-of-mass position, crystallographic orientation and strain state of grains. J. Appl. Crystallogr. 45(4), 705–718 (2012)

    Article  Google Scholar 

  24. Bernier, J.V., Barton, N.R., Lienert, U., Miller, M.P.: Far-field high-energy diffraction microscopy: a tool for intergranular orientation and strain analysis. J. Strain Anal. Eng. Des. 46(7), 527–547 (2011)

    Article  Google Scholar 

  25. Advanced Photon Source: “MIDAS,” MIDAS, microstructural imaging using diffraction analysis software. https://www1.aps.anl.gov/science/scientific-software/midas. Accessed 01 Mar 2016

  26. Dassault Systems: “Abaqus,” Abaqus 6.13 online documentation, 02-Apr-2013. http://129.97.46.200:2080/v6.13/. Accessed 01 Mar 2016

  27. Van Petegem, S., Wagner, J., Panzner, T., Upadhyay, M.V., Trang, T.T.T., Van Swygenhoven, H.: In-situ neutron diffraction during biaxial deformation. Acta Mater. 105, 404–416 (2016)

    Article  Google Scholar 

  28. Williams, M.L.: On the stress distribution at the base of a stationary crack. J. Appl. Mech. 24, 111–114 (1957)

    MathSciNet  Google Scholar 

  29. Irwin, G.R.: Analysis of stresses and strains near the end of a crack transversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  30. Sanford, R.J.: A critical re-examination of the westergaard method for solving opening-mode crack problems. Mech. Res. Commun. 6(5), 289–294 (1979)

    Article  MATH  Google Scholar 

  31. Barber, J.R.: Plane strain and plane stress. In: Elasticity, 3rd edn, pp. 40–41. Springer, New York (2010). Chapter 3, Section 2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Stebner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Hommer, G.M., Park, J.S., Collins, P.C., Pilchak, A.L., Stebner, A.P. (2017). A New In Situ Planar Biaxial Far-Field High Energy Diffraction Microscopy Experiment. In: Yoshida, S., Lamberti, L., Sciammarella, C. (eds) Advancement of Optical Methods in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-41600-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41600-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41599-4

  • Online ISBN: 978-3-319-41600-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics