Abstract
Compressive sensing and sparse approximation have many emerging applications, and are a relatively new driving force for the development of splitting methods in optimization. Many sparse coding problems are well described by variational models with ℓ 1-norm penalties and constraints that are designed to promote sparsity. Successful algorithms need to take advantage of the separable structure of potentially complicated objectives by “splitting” them into simpler pieces and iteratively solving a sequence of simpler convex minimization problems. In particular, isolating ℓ 1 terms from the rest of the objective leads to simple soft thresholding updates or ℓ 1 ball projections. A few basic splitting techniques can be used to design a huge variety of relevant algorithms. This chapter will focus on operator splitting strategies that are based on proximal operators, duality, and alternating direction methods. These will be explained in the context of basis pursuit variants and through compressive sensing applications.
Keywords
- Compressed Sensing
- Alternating Direction Method Of Multipliers (ADMM)
- ADMM Iterations
- Primal-dual Hybrid Gradient (PDHG)
- Douglas-Rachford Splitting
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options



Notes
- 1.
It is more correct to say light diverted towards/away from the detector results in a 0∕1 coefficient. In practice, 0∕1 measurements are converted to + 1∕ − 1 measurements by subtracting the average image intensity. Measurement matrices with + 1∕ − 1 coefficients are more well conditioned than their 0∕1 counterparts, and are easier to handle numerically.
References
Arrow, K.J., Hurwicz, L., Uzawa, H.: Studies in Linear and Non-Linear Programming. Stanford University Press (1958)
Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Convex optimization with sparsity-inducing norms. In: S. Sra, S. Nowozin, S. Wright (eds.) Optimization for Machine Learning, pp. 19–53. The MIT Press, Cambridge, MA (2012)
Bajwa, W.U., Sayeed, A.M., Nowak, R.: A restricted isometry property for structurally-subsampled unitary matrices. In: Communication, Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on, pp. 1005–1012. IEEE (2009)
Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constructive Approximation 28 (3), 253–263 (2008)
Bauschke, H.H., Combettes, P.L., Luke, D.R.: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. Journal of Approximation Theory 127 (2), 178–192 (2004)
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2 (1), 183–202 (2009)
Beck, A., Teboulle, M.: Gradient-based algorithms with applications to signal recovery. In: D. Palomar, Y. Eldar (eds.) Convex Optimization in Signal Processing and Communications, pp. 3–51. Cambridge University Press, Cambridge, UK (2010)
Becker, S., Fadili, J.: A quasi-Newton proximal splitting method. In: Advances in Neural Information Processing Systems (NIPS), pp. 2618–2626 (2012)
Van den Berg, E., Friedlander, M.: Probing the Pareto frontier for basis pursuit solutions. SIAM Journal on Scientific Computing 31 (2), 890–912 (2008)
Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, Cambridge, MA (1982)
Bertsekas, D.P.: Projected Newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization 20 (2), 221–246 (1982)
Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Nashua, NH (1999)
Bertsekas, D.P.: Extended monotropic programming and duality. Journal of Optimization Theory and Applications 139 (2), 209–225 (2008)
Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods, vol. 23. Prentice Hall, Englewood Cliffs, NJ (1989)
Bonettini, S., Ruggiero, V.: On the convergence of primal-dual hybrid gradient algorithms for total variation image restoration. Journal of Mathematical Imaging and Vision 44 (3), 236–253 (2012)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3 (1), 1–122 (2011)
Bredies, K., Sun, H.: Preconditioned Douglas-Rachford splitting methods for convex-concave saddle-point problems. SIAM Journal on Numerical Analysis 53 (1), 421–444 (2015)
Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics 7 (3), 200–217 (1967)
Brucker, P.: An O(n) algorithm for quadratic knapsack problems. Operations Research Letters 3 (3), 163–166 (1984)
Burger, M., Gilboa, G., Osher, S., Xu, J.: Nonlinear inverse scale space methods. Communications in Mathematical Sciences 4 (1), 179–212 (2006)
Burger, M., Möller, M., Benning, M., Osher, S.: An adaptive inverse scale space method for compressed sensing. Mathematics of Computation 82 (281), 269–299 (2013)
Burke, J.V., Qian, M.: A variable metric proximal point algorithm for monotone operators. SIAM Journal on Control and Optimization 37 (2), 353–375 (1999)
Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization 20 (4), 1956–1982 (2010)
Cai, J.F., Osher, S., Shen, Z.: Linearized Bregman iterations for compressed sensing. Mathematics of Computation 78 (267), 1515–1536 (2009)
Candès, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Problems 23 (3), 969 (2007)
Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. Information Theory, IEEE Transactions on 52 (2), 489–509 (2006)
Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Communications on pure and applied mathematics 59 (8), 1207–1223 (2006)
Candès, E.J., Tao, T.: Decoding by linear programming. Information Theory, IEEE Transactions on 51 (12), 4203–4215 (2005)
Censor, Y., Zenios, S.A.: Proximal minimization algorithm with D-functions. Journal of Optimization Theory and Applications 73 (3), 451–464 (1992)
Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20 (1–2), 89–97 (2004)
Chambolle, A., De Vore, R.A., Lee, N.Y., Lucier, B.J.: Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. Image Processing, IEEE Transactions on 7 (3), 319–335 (1998)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40 (1), 120–145 (2011)
Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM Journal on Scientific Computing 20 (6), 1964–1977 (1999)
Chan, T.F., Mulet, P.: On the convergence of the lagged diffusivity fixed point method in total variation image restoration. SIAM Journal on Numerical Analysis 36 (2), 354–367 (1999)
Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Mathematical Programming 155 (1–2), 57–79 (2016)
Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM Journal on Optimization 3 (3), 538–543 (1993)
Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Mathematical Programming 64 (1), 81–101 (1994)
Chen, L., Sun, D., Toh, K.C.: A note on the convergence of ADMM for linearly constrained convex optimization problems. arXiv preprint arXiv:1507.02051 (2015)
Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Review 43 (1), 129–159 (2001)
Chen, Y., Hager, W., Huang, F., Phan, D., Ye, X., Yin, W.: Fast algorithms for image reconstruction with application to partially parallel MR imaging. SIAM Journal on Imaging Sciences 5 (1), 90–118 (2012)
Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer (2011)
Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Modeling & Simulation 4 (4), 1168–1200 (2005)
Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. Journal of Optimization Theory and Applications 158 (2), 460–479 (2013)
Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics 57 (11), 1413–1457 (2004)
Davis, D., Yin, W.: Convergence rate analysis of several splitting schemes. In: R. Glowinski, S. Osher, W. Yin (eds.) Splitting Methods in Communication and Imaging, Science and Engineering, Chapter 4 Springer (2016)
Deng, W., Lai, M.J., Peng, Z., Yin, W.: Parallel multi-block ADMM with o(1/k) convergence. arXiv preprint arXiv:1312.3040 (2013)
Dong, B., Shen, Z., et al.: MRA based wavelet frames and applications. IAS Lecture Notes Series, Summer Program on “The Mathematics of Image Processing”, Park City Mathematics Institute 19 (2010)
Donoho, D.: Compressed sensing. Information Theory, IEEE Transactions on 52 (4), 1289–1306 (2006)
Donoho, D.: For most large underdetermined systems of equations, the minimal ℓ 1-norm near solution approximates the sparsest near-solution. Communications on Pure and Applied Mathematics 59 (7), 907–934 (2006)
Donoho, D., Huo, X.: Uncertainty principles and ideal atomic decomposition. Information Theory, IEEE Transactions on 47 (7), 2845–2862 (2001)
Donoho, D.L., Johnstone, J.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 (3), 425–455 (1994)
Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Transactions of the American mathematical Society 82 (2), 421–439 (1956)
Duarte, M., Davenport, M., Takhar, D., Laska, J., Sun, T., Kelly, K., Baraniuk, R.: Single-pixel imaging via compressive sampling: Building simpler, smaller, and less-expensive digital cameras. Signal Processing Magazine, IEEE 25 (2), 83–91 (2008)
Eckstein, J.: Splitting methods for monotone operators with applications to parallel optimization. Ph.D. thesis, Massachusetts Institute of Technology (1989)
Eckstein, J.: Nonlinear proximal point algorithms using bregman functions, with applications to convex programming. Mathematics of Operations Research 18 (1), 202–226 (1993)
Eckstein, J.: Augmented Lagrangian and alternating direction methods for convex optimization: A tutorial and some illustrative computational results. RUTCOR Research Reports 32 (2012)
Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming 55 (1–3), 293–318 (1992)
Elad, M.: Why simple shrinkage is still relevant for redundant representations? Information Theory, IEEE Transactions on 52 (12), 5559–5569 (2006)
Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM Journal on Imaging Sciences 3 (4), 1015–1046 (2010)
Fadili, M., Starck, J.: Sparse representation-based image deconvolution by iterative thresholding. Astronomical Data Analysis (ADA) ’06, Marseille, France (2006)
Figueiredo, M., Nowak, R.D.: An EM algorithm for wavelet-based image restoration. Image Processing, IEEE Transactions on 12 (8), 906–916 (2003)
Figueiredo, M.A., Bioucas-Dias, J.M., Nowak, R.D.: Majorization–minimization algorithms for wavelet-based image restoration. Image Processing, IEEE Transactions on 16 (12), 2980–2991 (2007)
Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. North-Holland, Amsterdam (1983)
Frick, K., Lorenz, D.A., Resmerita, E.: Morozov’s principle for the augmented Lagrangian method applied to linear inverse problems. Multiscale Modeling & Simulation 9 (4), 1528–1548 (2011)
Friedlander, M., Tseng, P.: Exact regularization of convex programs. SIAM Journal on Optimization 18 (4), 1326–1350 (2007)
Fukushima, M.: Application of the alternating direction method of multipliers to separable convex programming problems. Computational Optimization and Applications 1 (1), 93–111 (1992)
Fukushima, M., Mine, H.: A generalized proximal point algorithm for certain non-convex minimization problems. International Journal of Systems Science 12 (8), 989–1000 (1981)
Gabay, D.: Applications of the method of multipliers to variational inequalities. In: M. Fortin, R. Glowinski (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. North-Holland, Amsterdam (1983)
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers & Mathematics with Applications 2 (1), 17–40 (1976)
Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia, PA (1989)
Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. ESAIM: Mathematical Modelling and Numerical Analysis 9 (R2), 41–76 (1975)
Goldstein, T., Li, M., Yuan, X.: Adaptive primal-dual splitting methods for statistical learning and image processing. In: Advances in Neural Information Processing Systems (NIPS), pp. 2080–2088 (2015)
Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction optimization methods. SIAM Journal on Imaging Sciences 7 (3), 1588–1623 (2014)
Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences 2 (2), 323–343 (2009)
Goldstein, T., Studer, C., Baraniuk, R.: A field guide to forward-backward splitting with a FASTA implementation. arXiv preprint arXiv:1411.3406 (2014)
Goldstein, T., Xu, L., Kelly, K.F., Baraniuk, R.: The STONE transform: Multi-resolution image enhancement and compressive video. IEEE Transactions on Image Processing 24 (12), 5581–5593 (2015)
Gupta, M., Agrawal, A., Veeraraghavan, A., Narasimhan, S.G.: Flexible voxels for motion-aware videography. In: Proc. of the 11th European Conference on Computer Vision: Part I, ECCV’10, pp. 100–114. Springer-Verlag, Berlin, Heidelberg (2010)
Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for ℓ 1-minimization: Methodology and convergence. SIAM Journal on Optimization 19 (3), 1107–1130 (2008)
He, B., Peng, Z., Wang, X.: Proximal alternating direction-based contraction methods for separable linearly constrained convex optimization. Frontiers of Mathematics in China 6 (1), 79–114 (2011)
He, B., Tao, M., Xu, M., Yuan, X.: An alternating direction-based contraction method for linearly constrained separable convex programming problems. Optimization 62 (4), 573–596 (2013)
He, B., You, Y., Yuan, X.: On the convergence of primal-dual hybrid gradient algorithm. SIAM Journal on Imaging Sciences 7 (4), 2526–2537 (2014)
He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM Journal on Imaging Sciences 5 (1), 119–149 (2012)
Hestenes, M.R.: Multiplier and gradient methods. Journal of Optimization Theory and Applications 4 (5), 303–320 (1969)
Hong, M., Chang, T., Wang, X., Razaviyayn, M., Ma, S., Luo, Z.Q.: A block successive upper bound minimization method of multipliers for linearly constrained convex optimization. arXiv preprint arXiv:1401.7079 (2014)
Hong, M., Luo, Z.Q.: On the linear convergence of the alternating direction method of multipliers. arXiv preprint arXiv:1208.3922 (2012)
Ji, J.X., Son, J.B., Rane, S.D.: PULSAR: A Matlab toolbox for parallel magnetic resonance imaging using array coils and multiple channel receivers. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering 31 (1), 24–36 (2007)
Keeling, S.L., Clason, C., Hintermüller, M., Knoll, F., Laurain, A., Von Winckel, G.: An image space approach to cartesian based parallel MR imaging with total variation regularization. Medical Image Analysis 16 (1), 189–200 (2012)
Knoll, F., Clason, C., Bredies, K., Uecker, M., Stollberger, R.: Parallel imaging with nonlinear reconstruction using variational penalties. Magnetic Resonance in Medicine 67 (1), 34–41 (2012)
Kunisch, K., Hintermüller, M.: Total bounded variation regularization as a bilaterally constrained optimization problem. SIAM Journal on Applied Mathematics 64 (4), 1311–1333 (2004)
Lange, K., Hunter, D., Yang, I.: Optimization transfer using surrogate objective functions. Journal of Computational and Graphical Statistics 9 (1), 1–20 (2000)
Lee, J., Sun, Y., Saunders, M.: Proximal Newton-type methods for convex optimization. In: Advances in Neural Information Processing Systems (NIPS), pp. 836–844 (2012)
Li, G., Pong, T.K.: Global convergence of splitting methods for nonconvex composite optimization. SIAM Journal on Optimization 25 (4), 2434–2460 (2015)
Lions, P., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis 16 (6), 964–979 (1979)
Marcia, R.F., Harmany, Z.T., Willett, R.M.: Compressive coded aperture imaging. In: Proc. SPIE, p. 72460 (2009)
Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Revue Française d’Informatique et de Recherche Opérationnelle 4 (3), 154–158 (1970)
Moeller, M., Zhang, X.: Fast sparse reconstruction: Greedy inverse scale space flows. Mathematics of Computation 85 (297), 179–208 (2016)
Moreau, J.J.: Proximité et dualité dans un espace Hilbertien. Bulletin de la Société Mathématique de France 93, 273–299 (1965)
Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence O(1∕k 2). Soviet Mathematics Doklady 269 (3), 543–547 (1983)
Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Modeling & Simulation 4 (2), 460–489 (2005)
Osher, S., Ruan, F., Xiong, J., Yao, Y., Yin, W.: Sparse recovery via differential inclusions. Applied and Computational Harmonic Analysis (2016)
Ouyang, H., He, N., Tran, L., Gray, A.: Stochastic alternating direction method of multipliers. In: Proceedings of the 30th International Conference on Machine Learning, vol. 28, pp. 80–88 (2013)
Ouyang, Y., Chen, Y., Lan, G., Eduardo Pasiliao, J.: An accelerated linearized alternating direction method of multipliers. SIAM Journal on Imaging Sciences 8 (1), 644–681 (2015)
Parikh, N., Boyd, S.P.: Proximal algorithms. Foundations and Trends in Optimization 1 (3), 127–239 (2014)
Park, J.Y., Wakin, M.B.: Multiscale algorithm for reconstructing videos from streaming compressive measurements. Journal of Electronic Imaging 22 (2), 021,001–021,001 (2013)
Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. Journal of Mathematical Analysis and Applications 72 (2), 383–390 (1979)
Patrinos, P., Stella, L., Bemporad, A.: Douglas-Rachford splitting: Complexity estimates and accelerated variants. In: Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on, pp. 4234–4239 (2014)
Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: Computer Vision (ICCV), 2011 IEEE International Conference on, pp. 1762–1769. IEEE (2011)
Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford-Shah functional. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1133–1140. IEEE (2009)
Popov, L.: A modification of the Arrow-Hurwicz method for search of saddle points. Mathematical Notes 28 (5), 845–848 (1980)
Powell, M.: A method for nonlinear constraints in minimization problems. In: R. Fletcher (ed.) Optimization. Academic Press, New York, NY (1969)
Reddy, D., Veeraraghavan, A., Chellappa, R.: P2C2: Programmable pixel compressive camera for high speed imaging. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’11, pp. 329–336 (2011)
Rockafellar, R.: Monotropic programming: descent algorithms and duality. Nonlinear Programming 4, 327–366 (1981)
Rockafellar, R.T.: Convex Analysis. Princeton University Press (1970)
Rockafellar, R.T.: A dual approach to solving nonlinear programming problems by unconstrained optimization. Mathematical Programming 5 (1), 354–373 (1973)
Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Mathematics of Operations Research 1 (2), 97–116 (1976)
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization 14 (5) (1976)
Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer Dordrecht (2009)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60 (1), 259–268 (1992)
Sankaranarayanan, A.C., Studer, C., Baraniuk, R.G.: CS-MUVI: Video compressive sensing for spatial-multiplexing cameras. In: IEEE International Conference on Computational Photography (ICCP), pp. 1–10. IEEE (2012)
Scherzer, O., Groetsch, C.: Inverse scale space theory for inverse problems. In: Scale-Space and Morphology in Computer Vision, vol. 2106, pp. 317–325. Springer, Berlin Heidelberg (2001)
Schmidt, M., Kim, D., Sra, S.: Projected Newton-type methods in machine learning. In: S. Sra, S. Nowozin, S. Wright (eds.) Optimization for Machine Learning, pp. 305–330. MIT Press (2011)
Shefi, R., Teboulle, M.: Rate of convergence analysis of decomposition methods based on the proximal method of multipliers for convex minimization. SIAM Journal on Optimization 24 (1), 269–297 (2014)
Sra, S.: Fast projections onto mixed-norm balls with applications. Data Mining and Knowledge Discovery 25 (2), 358–377 (2012)
Suzuki, T.: Stochastic dual coordinate ascent with alternating direction method of multipliers. In: Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 736–744 (2014)
Tibshirani, R.: Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58 (1), 267–288 (1996)
Valkonen, T.: A primal–dual hybrid gradient method for nonlinear operators with applications to MRI. Inverse Problems 30 (5), 055,012 (2014)
Vogel, C., Oman, M.: Iterative methods for total variation denoising. SIAM Journal on Scientific Computing 17 (1), 227–238 (1996)
Wang, H., Banerjee, A.: Online alternating direction method (longer version). arXiv preprint arXiv:1306.3721 (2013)
Wang, H., Banerjee, A.: Bregman alternating direction method of multipliers. In: Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, K. Weinberger. (eds.) Advances in Neural Information Processing Systems 27 (NIPS), pp. 2816–2824 (2014)
Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal on Imaging Sciences 1 (3), 248–272 (2008)
Wright, S.J., Nowak, R.D., Figueiredo, M.A.: Sparse reconstruction by separable approximation. Signal Processing, IEEE Transactions on 57 (7), 2479–2493 (2009)
Yin, W.: Analysis and generalizations of the linearized Bregman method. SIAM Journal on Imaging Sciences 3 (4), 856–877 (2010)
Yin, W., Osher, S.: Error forgetting of Bregman iteration. Journal of Scientific Computing 54 (2–3), 684–695 (2012)
Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for ℓ 1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences 1 (1), 143–168 (2008)
Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68 (1), 49–67 (2006)
Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM Journal on Imaging Sciences 3 (3), 253–276 (2010)
Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. Journal of Scientific Computing 46 (1), 20–46 (2010)
Zhang, Y.: Theory of compressive sensing via ℓ 1-minimization: a Non-RIP analysis and extensions. Journal of the Operations Research Society of China 1 (1), 79–105 (2013)
Zhong, W., Kwok, J.: Fast stochastic alternating direction method of multipliers. In: Proceedings of the 31st International Conference on Machine Learning (ICML), pp. 46–54 (2014)
Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. CAM report 08-34, UCLA (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Goldstein, T., Zhang, X. (2016). Operator Splitting Methods in Compressive Sensing and Sparse Approximation. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-41589-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41587-1
Online ISBN: 978-3-319-41589-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)