Skip to main content

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

Our main goal in this chapter is to discuss the application of Alternating Direction Methods of Multipliers (ADMM) to the numerical solution of non-convex (and possibly non-smooth) variational problems. After giving a relatively detailed history of the ADMM methodology, we will discuss its application to the solution of problems from nonlinear Continuum Mechanics, nonlinear Elasticity, in particular. The ADMM solution of the two-dimensional Dirichlet problem for the Monge-Ampère equation will be discussed also. The results of numerical experiments will be reported, in order to illustrate the capabilities of the methodology under consideration

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York, NY (1975)

    MATH  Google Scholar 

  2. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math., 84, 375–393 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Böhmer, K.: On finite element methods for nonlinear elliptic equations of second order. SIAM J. Numer. Anal., 46, 1212–1249 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bourgat, J.F., Dumay, J.M., Glowinski, R.: Large displacement calculations of flexible pipelines by finite element and nonlinear programming methods. SIAM J. Sci. Stat. Comput., 1 (1), 34–81 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3 (1), 1–122 (2011)

    Article  MATH  Google Scholar 

  6. Brenier, Y., Frisch, U., Hénon, M., Loeper, G., Mattarese, S., Mohayahee, R., Sobolevskii, A.: Reconstruction of the early Universe as a convex optimization problem. Month. Notices Roy. Astron. Soc.,346 (2), 501–524 (2003)

    Google Scholar 

  7. Brenner, S.C., T. Gudi, T., Neilan, M., L.Y. Sung, L.Y.: C 0 penalty methods for the fully nonlinear Monge-Ampère equation. Math. Comp., 80 (276), 1979–1995 (2011)

    Google Scholar 

  8. Brenner, S.C., Neilan, M.: Finite element approximations of the three-dimensional Monge-Ampère equation. ESAIM: Math. Model. Numer. Anal., 46 (5), 979–1001 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Caboussat, A., Glowinski, R., Pons, V.: An augmented Lagrangian approach to the numerical solution of a non-smooth eigenvalue problem. Journal of Numerical Mathematics, 17 (1), 3–26 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Caboussat, A., Glowinski, R., Sorensen, D.C.: A least-squares method for the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in dimension two. ESAIM: Control Optim. Calcul Variations, 19 (3), 780–810 (2013)

    Article  MATH  Google Scholar 

  11. Cabré, X.: Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discr. Cont. Dyn, Syst., 8 (2), 331–360 (2002)

    Google Scholar 

  12. Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. AMS, Providence, RI (1995)

    Book  MATH  Google Scholar 

  13. Cea, J., Glowinski, R.: Sur des méthodes d’optimisation par relaxation. ESAIM: Math. Model. Num. Anal., 7 (R3),5–31 (1973)

    MATH  Google Scholar 

  14. Chan, T.F., Glowinski, R.: Finite Element Approximation and Iterative Solution of a Class of Mildly Nonlinear Elliptic Equations. Stanford report STAN-CS-78-674, Computer Science Department, Stanford University, Palo Alto, CA (1978)

    Google Scholar 

  15. Chartrand, R.: Non-convex splitting for regularized low-rank + sparse decomposition. IEEE Transactions on Signal Processing, 60 (11), 5810–5819 (2012)

    Article  MathSciNet  Google Scholar 

  16. Chartrand, R., Wohlberg, B.: A non-convex ADMM algorithm for group sparsity with sparse groups. In Proceedings of the IEEE 2013 International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6009–6013, IEEE (2013)

    Google Scholar 

  17. Chartrand, R., Sidky, E.Y., Pan, X.: Non-convex compressive sensing for X-ray CT: an algorithm comparison. In Proceedings of the IEEE 2013 Asilomar Conference on Signals, Systems and Computers, pp. 665–669, IEEE (2013)

    Google Scholar 

  18. Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia, PA (2013)

    MATH  Google Scholar 

  19. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Volume II: Partial Differential Equations. J. Wiley, New York, NY (1989)

    Book  MATH  Google Scholar 

  20. Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C. R. Math. Acad. Sci. Paris, 336 (9), 779–784 (2003)

    Article  MATH  Google Scholar 

  21. Dean, E.J., Glowinski, R.: An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. Electron. Transact. Num. Anal.,22, 71–96 (2006)

    Google Scholar 

  22. Dean, E.J., Glowinski, R.: Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Comp. Meth. Appl. Mech. Eng., 195 (13), 1344–1386 (2006)

    Article  MATH  Google Scholar 

  23. Dean, E.J., Glowinski, R., Guidoboni, G.: On the numerical simulation of Bingham visco- plastic flow: Old and new results. J. Non-Newtonian Fluid Mech., 142 (1–3), 36–62 (2007)

    Article  MATH  Google Scholar 

  24. Delbos, F., Gilbert, J.C., Glowinski, R., Sinoquet, D.: Constrained optimization in seismic reflection tomography: a Gauss-Newton augmented Lagrangian approach. Geophys. J. International, 164(3), 670–684 (2006)

    Article  Google Scholar 

  25. Douglas, J., Rachford, H.H.: On the solution of the heat conduction problem in 2 and 3 space variables. Trans. Amer. Math. Soc., 82, 421–439 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  26. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  27. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. SIAM, Philadelphia, PA (1999)

    Book  MATH  Google Scholar 

  28. Feng, X., Glowinski, R., Neilan, M.: Recent developments in numerical methods for fully nonlinear partial differential equations. SIAM Rev., 55 (2), 205–267 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Fortin, M., Glowinski, R.: Méthodes de Lagrangiens Augmentés: Application à la Résolution Numérique des Problèmes aux Limites. Dunod, Paris (1982)

    Google Scholar 

  30. Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  31. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York NY (1984) (2nd printing: 2008)

    Book  MATH  Google Scholar 

  32. Glowinski, R.: Finite element methods for incompressible viscous flow. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Vol. IX, pp. 3–1176. North-Holland, Amsterdam (2003)

    Google Scholar 

  33. Glowinski, R.: On alternating direction methods of multipliers: a historical perspective. In Fitzgibbon, W., Kuznetsov, Y.A., Neittannmäki, P., Pironneau, O. (eds.) Modeling, Simulation and Optimization for Science and Technology, pp. 52–82. Springer, Dordrecht (2014)

    Google Scholar 

  34. Glowinski, R.: Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems. SIAM, Philadelphia, PA (2015).

    Book  MATH  Google Scholar 

  35. Glowinski, R., Dean, E.J., Guidoboni, G., Juarez, H.L., Pan, T.W.: Applications of operator-splitting methods to the direct numerical simulation of particulate and free surface flows and to the numerical solution of the two-dimensional elliptic Monge-Ampère equation. Japan J. Ind. Appl. Math., 25 (1), 1–63 (2008)

    Article  MATH  Google Scholar 

  36. Glowinski, R., Hölmström, M.: Constrained motion problems with applications by nonlinear programming methods. Survey on Mathematics for Industry, 5, 75–108 (1995)

    MATH  MathSciNet  Google Scholar 

  37. Glowinski, R., Le Tallec, P.: Numerical solution of problems in incompressible finite elasticity by augmented Lagrangian methods. I. Two-dimensional and axisymmetric problems. SIAM J. Appl. Math., 42 (2), 400–429 (1982)

    MATH  Google Scholar 

  38. Glowinski, R., Le Tallec, P.: Numerical solution of problems in incompressible finite elasticity by augmented Lagrangian methods. II. Three-dimensional problems. SIAM J. Appl. Math., 44 (4), 710–733 (1984)

    Article  MATH  Google Scholar 

  39. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia, PA (1989)

    Book  MATH  Google Scholar 

  40. Glowinski, R., Lions, J.L., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  41. Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis d’ordre un et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. C.R. Acad. Sci. Paris, 278A, 1649–1652 (1974)

    MATH  Google Scholar 

  42. Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis d’ordre un et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. ESAIM: Math. Model. Num. Anal., 9 (R2), 41–76 (1975)

    MATH  Google Scholar 

  43. Glowinski, R., Quaini, A.: On an inequality of C. Sundberg: A computational investigation via nonlinear programming. J. Optim. Theory Appl., 158 (3), 739–772 (2013)

    MATH  Google Scholar 

  44. Glowinski, R., Wachs, A.: On the numerical simulation of visco-plastic fluid flow. In: Ciarlet, P.G., Glowinski, R., Xu, J. (eds.) Handbook of Numerical Analysis, Vol. XVI, North-Holland, Amsterdam, pp. 483–717 (2011)

    Google Scholar 

  45. Guttiérez, C.: The Monge-Ampère Equation. Birkhäuser, Boston, MA (2001)

    Book  Google Scholar 

  46. He, J.W., Glowinski, R.: Steady Bingham fluid flow in cylindrical pipes: a time dependent approach to the iterative solution. Num. Linear Algebra Appl., 7 (6), 381–428 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  47. Ito, K., Kunish, K.: Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia, PA (2008)

    Book  Google Scholar 

  48. Lagnese, J., Lions, J.L.: Modelling, Analysis and Control of Thin Plates. Masson, Paris (1988)

    MATH  Google Scholar 

  49. Le Tallec, P.: Numerical methods for nonlinear three-dimensional elasticity. In: Ciarlet, P.G., Lions, J.L., (eds.) Handbook of Numerical Analysis, Vol. 3, North-Holland, Amsterdam, pp. 465–622 (1994)

    Google Scholar 

  50. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  51. Majava, K., Glowinski, R., Kärkkäinen, T.: Solving a non-smooth eigenvalue problem using operator-splitting methods. Inter. J. Comp. Math., 84 (6), 825–846 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  52. Nečas, J.: Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris (1967)

    Google Scholar 

  53. Nečas, J.: Direct Methods in the Theory of Elliptic Equations. Springer, Heidelberg (2011)

    Google Scholar 

  54. Neilan, M.: A nonconforming Morley finite element method for the fully nonlinear Monge-Ampère equation. Numer. Math., 115 (3), 371–394 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  55. Oliker, V., Prussner, L.: On the numerical solution of the equation z xx z yy z xy  = f and its discretization. I, Numer. Math., 54 (3), 271–293 (1988)

    Google Scholar 

  56. Peaceman, D.H., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. SIAM, 3, 28–41 (1955)

    MATH  MathSciNet  Google Scholar 

  57. Raviart, P.A., Thomas, J.M.: Introduction à l’Analyse Numérique des Equations aux Dérivées Partielles. Masson, Paris (1983)

    MATH  Google Scholar 

  58. Schäfer, M.: Parallel algorithms for the numerical solution of incompressible finite elasticity problems. SIAM J. Sci. Stat. Comput., 12, 247–259 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  59. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966)

    MATH  Google Scholar 

  60. Sorensen, D.C., Glowinski, R.: A quadratically constrained minimization problem arising from PDE of Monge-Ampère type. Numer. Algor.. 53 (1), 53–66 (2010)

    Article  MATH  Google Scholar 

  61. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl., 110 (1), 353–372 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  62. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007)

    MATH  Google Scholar 

  63. Villani, C.: Topics in Optimal Transportation. AMS, Providence, RI (2003)

    Book  MATH  Google Scholar 

  64. Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization. arXiv:1511.06324 [cs, math] (2015)

    Google Scholar 

Download references

Acknowledgements

The author wants to thank this chapter referee and his present and former colleagues and collaborators J.F. Bourgat, A. Caboussat, E.J. Dean, J.M. Dumay, P. Le Tallec, A. Quaini, T.W. Pan, V. Pons, and L. Tartar for their invaluable help and suggestions. The support of NSF grants DMS 0412267 and DMS 0913982 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Glowinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glowinski, R. (2016). ADMM and Non-convex Variational Problems. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_8

Download citation

Publish with us

Policies and ethics