Abstract
Our main goal in this chapter is to discuss the application of Alternating Direction Methods of Multipliers (ADMM) to the numerical solution of non-convex (and possibly non-smooth) variational problems. After giving a relatively detailed history of the ADMM methodology, we will discuss its application to the solution of problems from nonlinear Continuum Mechanics, nonlinear Elasticity, in particular. The ADMM solution of the two-dimensional Dirichlet problem for the Monge-Ampère equation will be discussed also. The results of numerical experiments will be reported, in order to illustrate the capabilities of the methodology under consideration
Keywords
- Alternating Direction Method Of Multipliers (ADMM)
- ADMM Algorithm
- Linear Poisson Problem
- Convex Solution
- Incompressible Finite Elasticity
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options











References
Adams, R.A.: Sobolev Spaces. Academic Press, New York, NY (1975)
Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math., 84, 375–393 (2000)
Böhmer, K.: On finite element methods for nonlinear elliptic equations of second order. SIAM J. Numer. Anal., 46, 1212–1249 (2008)
Bourgat, J.F., Dumay, J.M., Glowinski, R.: Large displacement calculations of flexible pipelines by finite element and nonlinear programming methods. SIAM J. Sci. Stat. Comput., 1 (1), 34–81 (1980)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3 (1), 1–122 (2011)
Brenier, Y., Frisch, U., Hénon, M., Loeper, G., Mattarese, S., Mohayahee, R., Sobolevskii, A.: Reconstruction of the early Universe as a convex optimization problem. Month. Notices Roy. Astron. Soc.,346 (2), 501–524 (2003)
Brenner, S.C., T. Gudi, T., Neilan, M., L.Y. Sung, L.Y.: C 0 penalty methods for the fully nonlinear Monge-Ampère equation. Math. Comp., 80 (276), 1979–1995 (2011)
Brenner, S.C., Neilan, M.: Finite element approximations of the three-dimensional Monge-Ampère equation. ESAIM: Math. Model. Numer. Anal., 46 (5), 979–1001 (2012)
Caboussat, A., Glowinski, R., Pons, V.: An augmented Lagrangian approach to the numerical solution of a non-smooth eigenvalue problem. Journal of Numerical Mathematics, 17 (1), 3–26 (2009)
Caboussat, A., Glowinski, R., Sorensen, D.C.: A least-squares method for the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in dimension two. ESAIM: Control Optim. Calcul Variations, 19 (3), 780–810 (2013)
Cabré, X.: Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discr. Cont. Dyn, Syst., 8 (2), 331–360 (2002)
Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. AMS, Providence, RI (1995)
Cea, J., Glowinski, R.: Sur des méthodes d’optimisation par relaxation. ESAIM: Math. Model. Num. Anal., 7 (R3),5–31 (1973)
Chan, T.F., Glowinski, R.: Finite Element Approximation and Iterative Solution of a Class of Mildly Nonlinear Elliptic Equations. Stanford report STAN-CS-78-674, Computer Science Department, Stanford University, Palo Alto, CA (1978)
Chartrand, R.: Non-convex splitting for regularized low-rank + sparse decomposition. IEEE Transactions on Signal Processing, 60 (11), 5810–5819 (2012)
Chartrand, R., Wohlberg, B.: A non-convex ADMM algorithm for group sparsity with sparse groups. In Proceedings of the IEEE 2013 International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6009–6013, IEEE (2013)
Chartrand, R., Sidky, E.Y., Pan, X.: Non-convex compressive sensing for X-ray CT: an algorithm comparison. In Proceedings of the IEEE 2013 Asilomar Conference on Signals, Systems and Computers, pp. 665–669, IEEE (2013)
Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia, PA (2013)
Courant, R., Hilbert, D.: Methods of Mathematical Physics. Volume II: Partial Differential Equations. J. Wiley, New York, NY (1989)
Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C. R. Math. Acad. Sci. Paris, 336 (9), 779–784 (2003)
Dean, E.J., Glowinski, R.: An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. Electron. Transact. Num. Anal.,22, 71–96 (2006)
Dean, E.J., Glowinski, R.: Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Comp. Meth. Appl. Mech. Eng., 195 (13), 1344–1386 (2006)
Dean, E.J., Glowinski, R., Guidoboni, G.: On the numerical simulation of Bingham visco- plastic flow: Old and new results. J. Non-Newtonian Fluid Mech., 142 (1–3), 36–62 (2007)
Delbos, F., Gilbert, J.C., Glowinski, R., Sinoquet, D.: Constrained optimization in seismic reflection tomography: a Gauss-Newton augmented Lagrangian approach. Geophys. J. International, 164(3), 670–684 (2006)
Douglas, J., Rachford, H.H.: On the solution of the heat conduction problem in 2 and 3 space variables. Trans. Amer. Math. Soc., 82, 421–439 (1956)
Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)
Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. SIAM, Philadelphia, PA (1999)
Feng, X., Glowinski, R., Neilan, M.: Recent developments in numerical methods for fully nonlinear partial differential equations. SIAM Rev., 55 (2), 205–267 (2013)
Fortin, M., Glowinski, R.: Méthodes de Lagrangiens Augmentés: Application à la Résolution Numérique des Problèmes aux Limites. Dunod, Paris (1982)
Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems. North-Holland, Amsterdam (1983)
Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York NY (1984) (2nd printing: 2008)
Glowinski, R.: Finite element methods for incompressible viscous flow. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Vol. IX, pp. 3–1176. North-Holland, Amsterdam (2003)
Glowinski, R.: On alternating direction methods of multipliers: a historical perspective. In Fitzgibbon, W., Kuznetsov, Y.A., Neittannmäki, P., Pironneau, O. (eds.) Modeling, Simulation and Optimization for Science and Technology, pp. 52–82. Springer, Dordrecht (2014)
Glowinski, R.: Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems. SIAM, Philadelphia, PA (2015).
Glowinski, R., Dean, E.J., Guidoboni, G., Juarez, H.L., Pan, T.W.: Applications of operator-splitting methods to the direct numerical simulation of particulate and free surface flows and to the numerical solution of the two-dimensional elliptic Monge-Ampère equation. Japan J. Ind. Appl. Math., 25 (1), 1–63 (2008)
Glowinski, R., Hölmström, M.: Constrained motion problems with applications by nonlinear programming methods. Survey on Mathematics for Industry, 5, 75–108 (1995)
Glowinski, R., Le Tallec, P.: Numerical solution of problems in incompressible finite elasticity by augmented Lagrangian methods. I. Two-dimensional and axisymmetric problems. SIAM J. Appl. Math., 42 (2), 400–429 (1982)
Glowinski, R., Le Tallec, P.: Numerical solution of problems in incompressible finite elasticity by augmented Lagrangian methods. II. Three-dimensional problems. SIAM J. Appl. Math., 44 (4), 710–733 (1984)
Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia, PA (1989)
Glowinski, R., Lions, J.L., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)
Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis d’ordre un et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. C.R. Acad. Sci. Paris, 278A, 1649–1652 (1974)
Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis d’ordre un et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. ESAIM: Math. Model. Num. Anal., 9 (R2), 41–76 (1975)
Glowinski, R., Quaini, A.: On an inequality of C. Sundberg: A computational investigation via nonlinear programming. J. Optim. Theory Appl., 158 (3), 739–772 (2013)
Glowinski, R., Wachs, A.: On the numerical simulation of visco-plastic fluid flow. In: Ciarlet, P.G., Glowinski, R., Xu, J. (eds.) Handbook of Numerical Analysis, Vol. XVI, North-Holland, Amsterdam, pp. 483–717 (2011)
Guttiérez, C.: The Monge-Ampère Equation. Birkhäuser, Boston, MA (2001)
He, J.W., Glowinski, R.: Steady Bingham fluid flow in cylindrical pipes: a time dependent approach to the iterative solution. Num. Linear Algebra Appl., 7 (6), 381–428 (2000)
Ito, K., Kunish, K.: Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia, PA (2008)
Lagnese, J., Lions, J.L.: Modelling, Analysis and Control of Thin Plates. Masson, Paris (1988)
Le Tallec, P.: Numerical methods for nonlinear three-dimensional elasticity. In: Ciarlet, P.G., Lions, J.L., (eds.) Handbook of Numerical Analysis, Vol. 3, North-Holland, Amsterdam, pp. 465–622 (1994)
Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)
Majava, K., Glowinski, R., Kärkkäinen, T.: Solving a non-smooth eigenvalue problem using operator-splitting methods. Inter. J. Comp. Math., 84 (6), 825–846 (2007)
Nečas, J.: Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris (1967)
Nečas, J.: Direct Methods in the Theory of Elliptic Equations. Springer, Heidelberg (2011)
Neilan, M.: A nonconforming Morley finite element method for the fully nonlinear Monge-Ampère equation. Numer. Math., 115 (3), 371–394 (2010)
Oliker, V., Prussner, L.: On the numerical solution of the equation z xx z yy − z xy = f and its discretization. I, Numer. Math., 54 (3), 271–293 (1988)
Peaceman, D.H., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. SIAM, 3, 28–41 (1955)
Raviart, P.A., Thomas, J.M.: Introduction à l’Analyse Numérique des Equations aux Dérivées Partielles. Masson, Paris (1983)
Schäfer, M.: Parallel algorithms for the numerical solution of incompressible finite elasticity problems. SIAM J. Sci. Stat. Comput., 12, 247–259 (1991)
Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966)
Sorensen, D.C., Glowinski, R.: A quadratically constrained minimization problem arising from PDE of Monge-Ampère type. Numer. Algor.. 53 (1), 53–66 (2010)
Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl., 110 (1), 353–372 (1976)
Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007)
Villani, C.: Topics in Optimal Transportation. AMS, Providence, RI (2003)
Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization. arXiv:1511.06324 [cs, math] (2015)
Acknowledgements
The author wants to thank this chapter referee and his present and former colleagues and collaborators J.F. Bourgat, A. Caboussat, E.J. Dean, J.M. Dumay, P. Le Tallec, A. Quaini, T.W. Pan, V. Pons, and L. Tartar for their invaluable help and suggestions. The support of NSF grants DMS 0412267 and DMS 0913982 is also acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Glowinski, R. (2016). ADMM and Non-convex Variational Problems. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-41589-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41587-1
Online ISBN: 978-3-319-41589-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)