Skip to main content

Splitting Methods for Some Nonlinear Wave Problems

  • Chapter
  • First Online:
Splitting Methods in Communication, Imaging, Science, and Engineering

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

The main goal of this chapter is to discuss the numerical solution of nonlinear wave equations associated with the first of the celebrated Painlevé transcendent ordinary differential equations and the Bratu problem nonlinearity. In order to solve numerically the above equations, whose solutions blow up in finite time in most cases, we advocate a numerical methodology based on the Strang’s symmetrized operator-splitting scheme. With this approach, we can decouple nonlinearity and differential operators. The resulting schemes, combined with a finite element space discretization and adaptive time-stepping to monitor possible blow-up of the solution, provide a robust and accurate solution methodology, as shown by the results of the numerical experiments reported here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beale, J.T., and Majda, A., Rates of convergence for viscous splitting of the Navier-Stokes equations, Math. Comp., 37 (156), 1981, 243–259.

    Article  MATH  MathSciNet  Google Scholar 

  2. Bebernes, J., and Eberly, D., Mathematical Problems from Combustion Theory, Springer-Verlag, New York, NY, 1989.

    Book  MATH  Google Scholar 

  3. Bokil, V.A., and Glowinski, R., An operator-splitting scheme with a distributed Lagrange multiplier based fictitious domain method for wave propagation problems, J. Comput. Phys., 205 (1), 2005, 242–268.

    Article  MATH  MathSciNet  Google Scholar 

  4. Chorin, A.J., Hughes, T.J.R., McCracken, M.F., and Marsden, J.E., Product formulas and numerical algorithms, Comm. Pure Appl. Math., 31, 1978, 205–256.

    Article  MATH  MathSciNet  Google Scholar 

  5. Clarkson, P.A., Painlevé transcendents, In NIST Handbook of Mathematical Functions, Olver, F.W.J., Lozier, D.W., Boisvert, R.F., and Clark, C.W., eds., Cambridge University Press, Cambridge, UK, 2010, 723–740.

    Google Scholar 

  6. Fornberg, B. and Weideman, J.A.C., A numerical methodology for the Painlevé equations, J. Comp. Phys., 230 (15), 2011, 5957–5973.

    Article  MATH  Google Scholar 

  7. Genis, A.M., On finite element methods for the Euler-Poisson-Darboux equation, SIAM J. Numer. Anal., 12 (6), 1984, 1080–1106.

    Article  MATH  MathSciNet  Google Scholar 

  8. Glowinski, R., Numerical Methods for Nonlinear Variational Problems, Springer, New York, NY, 1984. (second printing: 2008)

    Google Scholar 

  9. Glowinski, R., Finite element methods for incompressible viscous flow, In Handbook of Numerical Analysis, Vol. IX, Ciarlet, P.G. & Lions, J.L., eds., North-Holland, Amsterdam, 2003, 3–1176.

    Google Scholar 

  10. Glowinski, R., Dean, E.J., Guidoboni, G., Juarez, L.H., and Pan, T.W., Application of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monge-Ampère equation, Japan J. Indust. Appl. Math., 25 (1), 2008, 1–63.

    Article  MATH  Google Scholar 

  11. Glowinski, R., and Quaini, A., On the numerical solution of a nonlinear wave equation associated with the first Painlevé equation: An operator-splitting approach, Chin. Ann. of Math., Series B, 34(2), 2013, 237–254.

    Article  MATH  MathSciNet  Google Scholar 

  12. Glowinski, R., and Quaini, A., When Euler-Poisson-Darboux meets Painlevé and Bratu: On the numerical solution of nonlinear wave equations., Methods and Applications of Analysis, 20(4), 2013, 405–424.

    Article  MATH  MathSciNet  Google Scholar 

  13. Glowinski, R., Shiau, L., and Sheppard, M., Numerical methods for a class of nonlinear integro-differential equations, Calcolo, 2012, DOI: 10.1007/s10092-012-0056-2.

    MATH  Google Scholar 

  14. Jimbo, M., Monodromy problem and the boundary condition for some Painlevé equations, Publ. Res. Inst. Sci., 18 (3), 1982, 1137–1161.

    Article  MATH  MathSciNet  Google Scholar 

  15. Keller, J.B., On solutions of nonlinear wave equations, Comm. Pure Appl. Math., 10 (4), 1957, 523–530.

    Article  MATH  MathSciNet  Google Scholar 

  16. Landman, M.J., Papanicolaou, G.C., Sulem, C., Sulem, P.L., Wang, X.P., Stability of isotropic singularities for the nonlinear Schrödinger equation, Physica D, 47, 1991, 393–415.

    Article  MATH  MathSciNet  Google Scholar 

  17. Leveque, R.J., and Oliger, J., Numerical methods based on additive splittings for hyperbolic partial differential equations, Math. Comp., 40 (162), 1983, 469–497.

    Article  MATH  MathSciNet  Google Scholar 

  18. Marchuk, G.I., Splitting and alternating direction method, In Handbook of Numerical Analysis, Vol. I, Ciarlet, P.G. & Lions, J.L., eds., North-Holland, Amsterdam, 1990, 197–462.

    Google Scholar 

  19. Samarski, A.A., Galaktionov, V.A., Kurdyumov, S.P., and Mikhailov, A.P., Blow-up in quasilinear parabolic equations, de Gruyter Expositions in Mathematics, vol. 19, de Gruyter, Berlin and Hawthorne, NY, 1995.

    Book  Google Scholar 

  20. Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5 (3), 1968, 506–517.

    Article  MATH  MathSciNet  Google Scholar 

  21. Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis, AMS, Providence, RI, 2001.

    Book  MATH  Google Scholar 

  22. http://en.wikipedia.org/wiki/Painlev_transcendents

  23. Wong, R. and Zhang, H.Y., On the connection formulas of the fourth Painlevé transcendent, Analysis and Applications, 7 (4), 2009, 419–448.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Quaini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Quaini, A., Glowinski, R. (2016). Splitting Methods for Some Nonlinear Wave Problems. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_20

Download citation

Publish with us

Policies and ethics