Skip to main content

Introduction

  • 3297 Accesses

Part of the Scientific Computation book series (SCIENTCOMP)

Abstract

The main goal of this chapter is to present a brief overview of operator splitting methods and algorithms when applied to the solution of initial value problems and optimization problems, topics to be addressed with many more details in the following chapters of this book. The various splitting algorithms, methods, and schemes to be considered and discussed include: the Lie scheme, the Strang symmetrized scheme, the Douglas-Rachford and Peaceman-Rachford alternating direction methods, the alternating direction method of multipliers (ADMM), and the split Bregman method. This chapter also contains a brief description of (most of) the following chapters of this book.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-41589-5_1
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-41589-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

References

  1. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends®; in Machine Learning 3 (1), 1–122 (2011)

    Google Scholar 

  2. Burger, M., Gilboa, G., Osher, S., Xu, J.: Nonlinear inverse scale space methods. Communications in Mathematical Sciences 4 (1), 179–212 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Burger, M., Möller, M., Benning, M., Osher, S.: An adaptive inverse scale space method for compressed sensing. Mathematics of Computation 82 (281), 269–299 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40 (1), 120–145 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Chorin, A.J., Hughes, T.J., McCracken, M.F., Marsden, J.E.: Product formulas and numerical algorithms. Communications on Pure and Applied Mathematics 31 (2), 205–256 (1978)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Descombes, S.: Convergence of a splitting method of high order for reaction-diffusion systems. Mathematics of Computation 70 (236), 1481–1501 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Descombes, S., Schatzman, M.: Directions alternées d’ordre élevé en réaction-diffusion. C. R. Acad. Sci. Paris Sér. I Math. 321 (11), 1521–1524 (1995)

    MATH  Google Scholar 

  8. Descombes, S., Schatzman, M.: On Richardson extrapolation of Strang formula for reaction-diffusion equations. diffusion equations. In: Equations aux Dérivées Partielles et Applications: Articles dédiés á J.L. Lions pp. 429–452 (1998)

    Google Scholar 

  9. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Transactions of the American Mathematical Society pp. 421–439 (1956)

    Google Scholar 

  10. Gabay, D.: Application de la méthode des multiplicateurs aux inéquations variationnelles. In: M. Fortin, R. Glowinski (eds.) Lagrangiens Augmentés: Application à la Résolution Numérique des Problèmes aux Limites pp. 279–307. Dunod, Paris (1982)

    Google Scholar 

  11. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: M. Fortin, R. Glowinski (eds.) Augmented Lagrangians: Application to the Numerical Solution of Boundary Value Problems pp. 299–331. North–Holland, Amsterdam (1983)

    Google Scholar 

  12. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers & Mathematics with Applications 2 (1), 17–40 (1976)

    CrossRef  MATH  Google Scholar 

  13. Glowinski, R.: Splitting methods for the numerical solution of the incompressible Navier-Stokes equations. In: J. A. V. Balakrishnan A. A. Dorodtnitsyn, L. Lions (eds.) Vistas in Applied Mathematics, pp. 57–95. Optimization Software (1986)

    Google Scholar 

  14. Glowinski, R.: Finite element methods for incompressible viscous flow. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis Vol. IX, pp. 3–1176. North–Holland, Amsterdam (2003)

    Google Scholar 

  15. Glowinski, R.: On alternating direction methods of multipliers: A historical perspective. In: Fitzgibbon, W., Kuznetsov, Y.A., Neittaanmäki, P., Pironneau, O. (eds.) Modeling, Simulation and Optimization for Science and Technology Vol. 34, pp. 59–82. Springer, Dordrecht (2014)

    Google Scholar 

  16. Glowinski, R.: Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems SIAM, Philadelphia, PA (2015)

    CrossRef  MATH  Google Scholar 

  17. Glowinski, R., Marroco, A.: On the approximation by finite elements of order one, and solution by penalisation-duality of a class of nonlinear Dirichlet problems. ESAIM: Mathematical Modelling and Numerical Analysis - Mathematical Modelling and Numerical Analysis 9 (R2), 41–76 (1975)

    MATH  Google Scholar 

  18. Godlewsky, E.: Méthodes à pas Multiples et de Directions Alternées pour la Discrétisation d’Equations d’Evolution. Doctoral Dissertation, Université P. & M. Curie, Paris (1980)

    Google Scholar 

  19. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences 2 (2), 323–343 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Layton, W.J., Maubach, J.M., Rabier, P.J.: Parallel algorithms for maximal monotone operators of local type. Numerische Mathematik 71 (1), 29–58 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Lie, S., Engel, F.: Theorie der transformationsgruppen (Vol. 1). American Soc., Providence, RI (1970)

    Google Scholar 

  22. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis 16 (6), 964–979 (1979)

    CrossRef  MATH  MathSciNet  Google Scholar 

  23. Marchuk, G.I.: Splitting and alternating direction methods. In: Ciarlet, P.G., Lions, J.L.(eds.) Handbook of Numerical Analysis Vol. I, pp. 197–462. North–Holland, Amsterdam (1990)

    CrossRef  Google Scholar 

  24. McLachlan, R.I., Reinout, G., Quispel, W.: Splitting methods. Acta Numerica 11, 341–434 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  25. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Modeling & Simulation 4 (2), 460–489 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  26. Osher, S., Ruan, F., Yao, Y., Yin, W., Xiong, J.: Sparse recovery via differential inclusions. UCLA CAM Report 14–16 (2014)

    Google Scholar 

  27. Peaceman, D.W., Rachford Jr, H.H.: The numerical solution of parabolic and elliptic differential equations. Journal of the Society for Industrial and Applied Mathematics 3 (1), 28–41 (1955)

    CrossRef  MATH  MathSciNet  Google Scholar 

  28. Sheng, Q.: Solving linear partial differential equations by exponential splitting. IMA Journal of Numerical Analysis 9 (2), 199–212 (1989)

    CrossRef  MATH  MathSciNet  Google Scholar 

  29. Sheng, Q.: Global error estimates for exponential splitting. IMA Journal of Numerical Analysis 14 (1), 27–56 (1994)

    CrossRef  MATH  MathSciNet  Google Scholar 

  30. Strang, G.: On the construction and comparison of difference schemes. SIAM Journal on Numerical Analysis 5 (3), 506–517 (1968)

    CrossRef  MATH  MathSciNet  Google Scholar 

  31. Thalhammer, M.: High-order exponential operator splitting methods for time-dependent Schrödinger equations. SIAM Journal on Numerical Analysis 46 (4), 2022–2038 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  32. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM Journal on Control and Optimization 29 (1), 119–138 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  33. Usadi, A., Dawson, C.: 50 Years of ADI Methods: Celebrating the Contributions of Jim Douglas, Don Peaceman and Henry Rachford. SIAM News 39 (2) (2006)

    Google Scholar 

  34. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A New Alternating Minimization Algorithm for Total Variation Image Reconstruction. SIAM Journal on Imaging Sciences 1 (3), 248–272 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  35. Yin, W., Osher, S.: Error forgetting of Bregman iteration. Journal of Scientific Computing 54 (2–3), 684–695 (2013)

    CrossRef  MATH  MathSciNet  Google Scholar 

  36. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for 1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences 1 (1), 143–168 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  37. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM Journal on Imaging Sciences 3 (3), 253–276 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  38. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report pp. 08–34 (2008)

    Google Scholar 

Download references

Acknowledgements

All the chapters in this book have been peer-reviewed. We greatly appreciate the voluntary work and experted reviews by the anonymous reviewers. We want to express our deep and sincere gratitude to all the authors, who have made tremendous contributions and offered generous support to this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Glowinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glowinski, R., Osher, S.J., Yin, W. (2016). Introduction. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_1

Download citation