Abstract
The main goal of this chapter is to present a brief overview of operator splitting methods and algorithms when applied to the solution of initial value problems and optimization problems, topics to be addressed with many more details in the following chapters of this book. The various splitting algorithms, methods, and schemes to be considered and discussed include: the Lie scheme, the Strang symmetrized scheme, the Douglas-Rachford and Peaceman-Rachford alternating direction methods, the alternating direction method of multipliers (ADMM), and the split Bregman method. This chapter also contains a brief description of (most of) the following chapters of this book.
This is a preview of subscription content, access via your institution.
Buying options
References
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends®; in Machine Learning 3 (1), 1–122 (2011)
Burger, M., Gilboa, G., Osher, S., Xu, J.: Nonlinear inverse scale space methods. Communications in Mathematical Sciences 4 (1), 179–212 (2006)
Burger, M., Möller, M., Benning, M., Osher, S.: An adaptive inverse scale space method for compressed sensing. Mathematics of Computation 82 (281), 269–299 (2012)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40 (1), 120–145 (2011)
Chorin, A.J., Hughes, T.J., McCracken, M.F., Marsden, J.E.: Product formulas and numerical algorithms. Communications on Pure and Applied Mathematics 31 (2), 205–256 (1978)
Descombes, S.: Convergence of a splitting method of high order for reaction-diffusion systems. Mathematics of Computation 70 (236), 1481–1501 (2001)
Descombes, S., Schatzman, M.: Directions alternées d’ordre élevé en réaction-diffusion. C. R. Acad. Sci. Paris Sér. I Math. 321 (11), 1521–1524 (1995)
Descombes, S., Schatzman, M.: On Richardson extrapolation of Strang formula for reaction-diffusion equations. diffusion equations. In: Equations aux Dérivées Partielles et Applications: Articles dédiés á J.L. Lions pp. 429–452 (1998)
Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Transactions of the American Mathematical Society pp. 421–439 (1956)
Gabay, D.: Application de la méthode des multiplicateurs aux inéquations variationnelles. In: M. Fortin, R. Glowinski (eds.) Lagrangiens Augmentés: Application à la Résolution Numérique des Problèmes aux Limites pp. 279–307. Dunod, Paris (1982)
Gabay, D.: Applications of the method of multipliers to variational inequalities. In: M. Fortin, R. Glowinski (eds.) Augmented Lagrangians: Application to the Numerical Solution of Boundary Value Problems pp. 299–331. North–Holland, Amsterdam (1983)
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers & Mathematics with Applications 2 (1), 17–40 (1976)
Glowinski, R.: Splitting methods for the numerical solution of the incompressible Navier-Stokes equations. In: J. A. V. Balakrishnan A. A. Dorodtnitsyn, L. Lions (eds.) Vistas in Applied Mathematics, pp. 57–95. Optimization Software (1986)
Glowinski, R.: Finite element methods for incompressible viscous flow. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis Vol. IX, pp. 3–1176. North–Holland, Amsterdam (2003)
Glowinski, R.: On alternating direction methods of multipliers: A historical perspective. In: Fitzgibbon, W., Kuznetsov, Y.A., Neittaanmäki, P., Pironneau, O. (eds.) Modeling, Simulation and Optimization for Science and Technology Vol. 34, pp. 59–82. Springer, Dordrecht (2014)
Glowinski, R.: Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems SIAM, Philadelphia, PA (2015)
Glowinski, R., Marroco, A.: On the approximation by finite elements of order one, and solution by penalisation-duality of a class of nonlinear Dirichlet problems. ESAIM: Mathematical Modelling and Numerical Analysis - Mathematical Modelling and Numerical Analysis 9 (R2), 41–76 (1975)
Godlewsky, E.: Méthodes à pas Multiples et de Directions Alternées pour la Discrétisation d’Equations d’Evolution. Doctoral Dissertation, Université P. & M. Curie, Paris (1980)
Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences 2 (2), 323–343 (2009)
Layton, W.J., Maubach, J.M., Rabier, P.J.: Parallel algorithms for maximal monotone operators of local type. Numerische Mathematik 71 (1), 29–58 (1995)
Lie, S., Engel, F.: Theorie der transformationsgruppen (Vol. 1). American Soc., Providence, RI (1970)
Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis 16 (6), 964–979 (1979)
Marchuk, G.I.: Splitting and alternating direction methods. In: Ciarlet, P.G., Lions, J.L.(eds.) Handbook of Numerical Analysis Vol. I, pp. 197–462. North–Holland, Amsterdam (1990)
McLachlan, R.I., Reinout, G., Quispel, W.: Splitting methods. Acta Numerica 11, 341–434 (2002)
Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Modeling & Simulation 4 (2), 460–489 (2005)
Osher, S., Ruan, F., Yao, Y., Yin, W., Xiong, J.: Sparse recovery via differential inclusions. UCLA CAM Report 14–16 (2014)
Peaceman, D.W., Rachford Jr, H.H.: The numerical solution of parabolic and elliptic differential equations. Journal of the Society for Industrial and Applied Mathematics 3 (1), 28–41 (1955)
Sheng, Q.: Solving linear partial differential equations by exponential splitting. IMA Journal of Numerical Analysis 9 (2), 199–212 (1989)
Sheng, Q.: Global error estimates for exponential splitting. IMA Journal of Numerical Analysis 14 (1), 27–56 (1994)
Strang, G.: On the construction and comparison of difference schemes. SIAM Journal on Numerical Analysis 5 (3), 506–517 (1968)
Thalhammer, M.: High-order exponential operator splitting methods for time-dependent Schrödinger equations. SIAM Journal on Numerical Analysis 46 (4), 2022–2038 (2008)
Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM Journal on Control and Optimization 29 (1), 119–138 (1991)
Usadi, A., Dawson, C.: 50 Years of ADI Methods: Celebrating the Contributions of Jim Douglas, Don Peaceman and Henry Rachford. SIAM News 39 (2) (2006)
Wang, Y., Yang, J., Yin, W., Zhang, Y.: A New Alternating Minimization Algorithm for Total Variation Image Reconstruction. SIAM Journal on Imaging Sciences 1 (3), 248–272 (2008)
Yin, W., Osher, S.: Error forgetting of Bregman iteration. Journal of Scientific Computing 54 (2–3), 684–695 (2013)
Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for ℓ 1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences 1 (1), 143–168 (2008)
Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM Journal on Imaging Sciences 3 (3), 253–276 (2010)
Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report pp. 08–34 (2008)
Acknowledgements
All the chapters in this book have been peer-reviewed. We greatly appreciate the voluntary work and experted reviews by the anonymous reviewers. We want to express our deep and sincere gratitude to all the authors, who have made tremendous contributions and offered generous support to this book.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Glowinski, R., Osher, S.J., Yin, W. (2016). Introduction. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-41589-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41587-1
Online ISBN: 978-3-319-41589-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)