Skip to main content

Operator Splitting Methods with Error Estimator and Adaptive Time-Stepping. Application to the Simulation of Combustion Phenomena

Part of the Scientific Computation book series (SCIENTCOMP)

Abstract

Operator splitting techniques were originally introduced with the main objective of saving computational costs. A multi-physics problem is thus split in subproblems of different nature with a significant reduction of the algorithmic complexity and computational requirements of the numerical solvers. Nevertheless, splitting errors are introduced in the numerical approximations due to the separate evolution of the split subproblems and can compromise a reliable simulation of the coupled dynamics. In this chapter we present a numerical technique to estimate such splitting errors on the fly and dynamically adapt the splitting time steps according to a user-defined accuracy tolerance. The method applies to the numerical solution of time-dependent stiff PDEs, illustrated here by propagating laminar flames investigated in combustion applications.

Mathematical Subject Classification (2010):

  • 65M22
  • 65G20
  • 65Z05
  • 35K55

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-41589-5_19
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-41589-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 19.1

References

  1. Abdulle, A.: Fourth order Chebyshev methods with recurrence relation. SIAM J. Sci. Comput. 23 (6), 2041–2054 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Auzinger, W., Koch, O., Thalhammer, M.: Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part I: The linear case. J. Comput. Appl. Math. 236 (10), 2643–2659 (2012)

    MATH  Google Scholar 

  3. Bell, J., Berger, M., Saltzman, J., Welcome, M.: Three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comput. 15, 127–138 (1994)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Bell, J., Day, M., Almgren, A., Lijewski, M., Rendleman, C., Cheng, R., Shepherd, I.: Simulation of lean premixed turbulent combustion. J. Phys. Conf. Ser. 46, 1–15 (2006)

    CrossRef  MathSciNet  Google Scholar 

  5. Bell, J., Day, M., Grcar, J.: Numerical simulation of premixed turbulent methane combustion. Proc. Combust. Inst. 29 (2), 1987–1993 (2002)

    CrossRef  Google Scholar 

  6. Bell, J., Day, M., Grcar, J., Lijewski, M., Driscoll, J., Filatyev, S.: Numerical simulation of a laboratory-scale turbulent slot flame. Proc. Combust. Inst. 31 (1), 1299–1307 (2007)

    CrossRef  Google Scholar 

  7. Bell, J., Day, M., Shepherd, I., Johnson, M., Cheng, R., Grcar, J., Beckner, V., Lijewski, M.: Numerical simulation of a laboratory-scale turbulent V-flame. Proc. Nat. Acad. Sci. 1021, 10,006–10,011 (2005)

    Google Scholar 

  8. Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Blanes, S., Casas, F., Chartier, P., Murua, A.: Optimized high-order splitting methods for some classes of parabolic equations. Math. Comp. 82 (283), 1559–1576 (2013)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Brown, P.N., Byrne, G., Hindmarsh, A.: VODE: A variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10, 1038–1051 (1989)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Castella, F., Chartier, P., Descombes, S., Vilmart, G.: Splitting methods with complex times for parabolic equations. BIT Numer. Math. 49, 487–508 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Cohen, A., Kaber, S., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comp. 72, 183–225 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Cuoci, A., Frassoldati, A., Faravelli, T., Ranzi, E.: Numerical modeling of laminar flames with detailed kinetics based on the operator-splitting method. Energy & Fuels 27 (12), 7730–7753 (2013)

    CrossRef  Google Scholar 

  14. Dahlquist, G.: A special stability problem for linear multistep methods. Nordisk Tidskr. Informations-Behandling 3, 27–43 (1963)

    MATH  MathSciNet  Google Scholar 

  15. D’Angelo, Y., Larrouturou, B.: Comparison and analysis of some numerical schemes for stiff complex chemistry problems. RAIRO Modél. Math. Anal. Numér. 29 (3), 259–301 (1995)

    MATH  MathSciNet  Google Scholar 

  16. Day, M., Bell, J.: Numerical simulation of laminar reacting flows with complex chemistry. Combust. Theory Model. 4, 535–556 (2000)

    CrossRef  MATH  Google Scholar 

  17. Descombes, S.: Convergence of a splitting method of high order for reaction-diffusion systems. Math. Comp. 70 (236), 1481–1501 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Descombes, S., Duarte, M., Dumont, T., Guillet, T., Louvet, V., Massot, M.: Task-based adaptive multiresolution for time-space multi-scale reaction-diffusion systems on multi-core architectures. arXiv preprint arXiv:1506.04651 p. 24 (2015)

    Google Scholar 

  19. Descombes, S., Duarte, M., Dumont, T., Laurent, F., Louvet, V., Massot, M.: Analysis of operator splitting in the nonasymptotic regime for nonlinear reaction-diffusion equations. Application to the dynamics of premixed flames. SIAM J. Numer. Anal. 52 (3), 1311–1334 (2014)

    CrossRef  MATH  Google Scholar 

  20. Descombes, S., Duarte, M., Dumont, T., Louvet, V., Massot, M.: Adaptive time splitting method for multi-scale evolutionary partial differential equations. Confluentes Math. 3 (3), 413–443 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Descombes, S., Massot, M.: Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: Singular perturbation and order reduction. Numer. Math. 97 (4), 667–698 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  22. Descombes, S., Schatzman, M.: Strang’s formula for holomorphic semi-groups. J. Math. Pures Appl. (9) 81 (1), 93–114 (2002)

    Google Scholar 

  23. Descombes, S., Thalhammer, M.: The Lie-Trotter splitting for nonlinear evolutionary problems with critical parameters: A compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime. IMA J. Numer. Anal. 33 (2), 722–745 (2013)

    CrossRef  MATH  Google Scholar 

  24. Dia, B.O., Schatzman, M.: Commutateurs de certains semi-groupes holomorphes et applications aux directions alternées. RAIRO Modél. Math. Anal. Numér. 30 (3), 343–383 (1996)

    MathSciNet  Google Scholar 

  25. Duarte, M.: Méthodes numériques adaptatives pour la simulation de la dynamique de fronts de réaction multi-échelles en temps et en espace. Ph.D. thesis, Ecole Centrale Paris, France (2011)

    Google Scholar 

  26. Duarte, M., Descombes, S., Tenaud, C., Candel, S., Massot, M.: Time-space adaptive numerical methods for the simulation of combustion fronts. Combust. Flame 160, 1083–1101 (2013)

    CrossRef  Google Scholar 

  27. Duarte, M., Massot, M., Descombes, S., Tenaud, C., Dumont, T., Louvet, V., Laurent, F.: New resolution strategy for multi-scale reaction waves using time operator splitting and space adaptive multiresolution: Application to human ischemic stroke. ESAIM: Proc. 34, 277–290 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  28. Duarte, M., Massot, M., Descombes, S., Tenaud, C., Dumont, T., Louvet, V., Laurent, F.: New resolution strategy for multiscale reaction waves using time operator splitting, space adaptive multiresolution and dedicated high order implicit/explicit time integrators. SIAM J. Sci. Comput. 34 (1), A76–A104 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  29. Dumont, T., Duarte, M., Descombes, S., Dronne, M.A., Massot, M., Louvet, V.: Simulation of human ischemic stroke in realistic 3D geometry. Commun. Nonlinear Sci. Numer. Simul. 18 (6), 1539–1557 (2013)

    CrossRef  MATH  MathSciNet  Google Scholar 

  30. Goyal, G., Paul, P., Mukunda, H., Deshpande, S.: Time dependent operator-split and unsplit schemes for one dimensional premixed flames. Combust. Sci. Technol. 60, 167–189 (1988)

    CrossRef  Google Scholar 

  31. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer–Verlag, Berlin (2006)

    Google Scholar 

  32. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 2nd edn. Springer–Verlag, Berlin (1996)

    Google Scholar 

  33. Hansen, E., Ostermann, A.: High order splitting methods for analytic semigroups exist. BIT Numer. Math. 49, 527–542 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  34. Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Comm. Pure Appl. Math. 48, 1305–1342 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  35. van der Houwen, P., Sommeijer, B.: On the internal stability of explicit, m-stage Runge-Kutta methods for large m-values. Z. Angew. Math. Mech. 60 (10), 479–485 (1980)

    CrossRef  MATH  MathSciNet  Google Scholar 

  36. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer–Verlag, Berlin (2003)

    CrossRef  MATH  Google Scholar 

  37. Knio, O., Najm, H., Wyckoff, P.: A semi-implicit numerical scheme for reacting flow. II. Stiff, operator-split formulation. J. Comput. Phys. 154 (2), 428–467 (1999)

    Google Scholar 

  38. Koch, O., Neuhauser, C., Thalhammer, M.: Embedded exponential operator splitting methods for the time integration of nonlinear evolution equations. Appl. Numer. Math. 63, 14–24 (2013)

    CrossRef  MATH  MathSciNet  Google Scholar 

  39. Kozlov, R., Kværnø, A., Owren, B.: The behaviour of the local error in splitting methods applied to stiff problems. J. Comput. Phys. 195 (2), 576–593 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  40. Lanser, D., Verwer, J.: Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling. J. Comput. Appl. Math. 111 (1–2), 201–216 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  41. Marchuk, G.: Some application of splitting-up methods to the solution of mathematical physics problems. Appl. Math. 13 (2), 103–132 (1968)

    MATH  MathSciNet  Google Scholar 

  42. Müller, S.: Adaptive Multiscale Schemes for Conservation Laws, Lect. Notes Comput. Sci. Eng., vol. 27. Springer-Verlag (2003)

    Google Scholar 

  43. Najm, H., Knio, O.: Modeling low Mach number reacting flow with detailed chemistry and transport. J. Sci. Comput. 25 (1–2), 263–287 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  44. Oran, E., Boris, J.: Numerical Simulation of Reacting Flows, 2nd edn. Cambridge University Press (2001)

    Google Scholar 

  45. Ren, Z., Xu, C., Lu, T., Singer, M.A.: Dynamic adaptive chemistry with operator splitting schemes for reactive flow simulations. J. Comput. Phys. 263 (0), 19–36 (2014)

    CrossRef  MATH  Google Scholar 

  46. Ropp, D., Shadid, J.: Stability of operator splitting methods for systems with indefinite operators: Reaction-diffusion systems. J. Comput. Phys. 203 (2), 449–466 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  47. Safta, C., Ray, J., Najm, H.: A high-order low-Mach number AMR construction for chemically reacting flows. J. Comput. Phys. 229 (24), 9299–9322 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  48. Schwer, D., Lu, P., Green, W., Semião, V.: A consistent-splitting approach to computing stiff steady-state reacting flows with adaptive chemistry. Combust. Theory Model. 7 (2), 383–399 (2003)

    CrossRef  Google Scholar 

  49. Sheng, Q.: Global error estimates for exponential splitting. IMA J. Numer. Anal. 14 (1), 27–56 (1994)

    CrossRef  MATH  MathSciNet  Google Scholar 

  50. Singer, M., Pope, S.: Exploiting ISAT to solve the reaction-diffusion equation. Combust. Theory Model. 8 (2), 361–383 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  51. Singer, M., Pope, S., Najm, H.: Modeling unsteady reacting flow with operator splitting and ISAT. Combust. Flame 147 (1–2), 150–162 (2006)

    CrossRef  MATH  Google Scholar 

  52. Sportisse, B.: An analysis of operator splitting techniques in the stiff case. J. Comput. Phys. 161 (1), 140–168 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  53. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    CrossRef  MATH  MathSciNet  Google Scholar 

  54. Thévenin, D., Candel, S.: Ignition dynamics of a diffusion flame rolled up in a vortex. Phys. Fluids 7 (2), 434–445 (1995)

    CrossRef  MATH  Google Scholar 

  55. Trotter, H.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545–551 (1959)

    CrossRef  MATH  MathSciNet  Google Scholar 

  56. Valorani, M., Goussis, D.: Explicit time-scale splitting algorithm for stiff problems: Auto-ignition of gaseous mixtures behind a steady shock. J. Comput. Phys. 169 (1), 44–79 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  57. Verwer, J.: Explicit Runge-Kutta methods for parabolic partial differential equations. Appl. Numer. Math. 22 (1–3), 359–379 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  58. Verwer, J.G., Spee, E.J., Blom, J.G., Hundsdorfer, W.: A second-order Rosenbrock method applied to photochemical dispersion problems. SIAM J. Sci. Comput. 20 (4), 1456–1480 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  59. Yang, B., Pope, S.: An investigation of the accuracy of manifold methods and splitting schemes in the computational implementation of combustion chemistry. Combust. Flame 112 (1–2), 16–32 (1998)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Descombes, S., Duarte, M., Massot, M. (2016). Operator Splitting Methods with Error Estimator and Adaptive Time-Stepping. Application to the Simulation of Combustion Phenomena. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_19

Download citation