Abstract
Operator splitting techniques were originally introduced with the main objective of saving computational costs. A multi-physics problem is thus split in subproblems of different nature with a significant reduction of the algorithmic complexity and computational requirements of the numerical solvers. Nevertheless, splitting errors are introduced in the numerical approximations due to the separate evolution of the split subproblems and can compromise a reliable simulation of the coupled dynamics. In this chapter we present a numerical technique to estimate such splitting errors on the fly and dynamically adapt the splitting time steps according to a user-defined accuracy tolerance. The method applies to the numerical solution of time-dependent stiff PDEs, illustrated here by propagating laminar flames investigated in combustion applications.
Mathematical Subject Classification (2010):
- 65M22
- 65G20
- 65Z05
- 35K55
This is a preview of subscription content, access via your institution.
Buying options

References
Abdulle, A.: Fourth order Chebyshev methods with recurrence relation. SIAM J. Sci. Comput. 23 (6), 2041–2054 (2002)
Auzinger, W., Koch, O., Thalhammer, M.: Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part I: The linear case. J. Comput. Appl. Math. 236 (10), 2643–2659 (2012)
Bell, J., Berger, M., Saltzman, J., Welcome, M.: Three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comput. 15, 127–138 (1994)
Bell, J., Day, M., Almgren, A., Lijewski, M., Rendleman, C., Cheng, R., Shepherd, I.: Simulation of lean premixed turbulent combustion. J. Phys. Conf. Ser. 46, 1–15 (2006)
Bell, J., Day, M., Grcar, J.: Numerical simulation of premixed turbulent methane combustion. Proc. Combust. Inst. 29 (2), 1987–1993 (2002)
Bell, J., Day, M., Grcar, J., Lijewski, M., Driscoll, J., Filatyev, S.: Numerical simulation of a laboratory-scale turbulent slot flame. Proc. Combust. Inst. 31 (1), 1299–1307 (2007)
Bell, J., Day, M., Shepherd, I., Johnson, M., Cheng, R., Grcar, J., Beckner, V., Lijewski, M.: Numerical simulation of a laboratory-scale turbulent V-flame. Proc. Nat. Acad. Sci. 1021, 10,006–10,011 (2005)
Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)
Blanes, S., Casas, F., Chartier, P., Murua, A.: Optimized high-order splitting methods for some classes of parabolic equations. Math. Comp. 82 (283), 1559–1576 (2013)
Brown, P.N., Byrne, G., Hindmarsh, A.: VODE: A variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10, 1038–1051 (1989)
Castella, F., Chartier, P., Descombes, S., Vilmart, G.: Splitting methods with complex times for parabolic equations. BIT Numer. Math. 49, 487–508 (2009)
Cohen, A., Kaber, S., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comp. 72, 183–225 (2003)
Cuoci, A., Frassoldati, A., Faravelli, T., Ranzi, E.: Numerical modeling of laminar flames with detailed kinetics based on the operator-splitting method. Energy & Fuels 27 (12), 7730–7753 (2013)
Dahlquist, G.: A special stability problem for linear multistep methods. Nordisk Tidskr. Informations-Behandling 3, 27–43 (1963)
D’Angelo, Y., Larrouturou, B.: Comparison and analysis of some numerical schemes for stiff complex chemistry problems. RAIRO Modél. Math. Anal. Numér. 29 (3), 259–301 (1995)
Day, M., Bell, J.: Numerical simulation of laminar reacting flows with complex chemistry. Combust. Theory Model. 4, 535–556 (2000)
Descombes, S.: Convergence of a splitting method of high order for reaction-diffusion systems. Math. Comp. 70 (236), 1481–1501 (2001)
Descombes, S., Duarte, M., Dumont, T., Guillet, T., Louvet, V., Massot, M.: Task-based adaptive multiresolution for time-space multi-scale reaction-diffusion systems on multi-core architectures. arXiv preprint arXiv:1506.04651 p. 24 (2015)
Descombes, S., Duarte, M., Dumont, T., Laurent, F., Louvet, V., Massot, M.: Analysis of operator splitting in the nonasymptotic regime for nonlinear reaction-diffusion equations. Application to the dynamics of premixed flames. SIAM J. Numer. Anal. 52 (3), 1311–1334 (2014)
Descombes, S., Duarte, M., Dumont, T., Louvet, V., Massot, M.: Adaptive time splitting method for multi-scale evolutionary partial differential equations. Confluentes Math. 3 (3), 413–443 (2011)
Descombes, S., Massot, M.: Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: Singular perturbation and order reduction. Numer. Math. 97 (4), 667–698 (2004)
Descombes, S., Schatzman, M.: Strang’s formula for holomorphic semi-groups. J. Math. Pures Appl. (9) 81 (1), 93–114 (2002)
Descombes, S., Thalhammer, M.: The Lie-Trotter splitting for nonlinear evolutionary problems with critical parameters: A compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime. IMA J. Numer. Anal. 33 (2), 722–745 (2013)
Dia, B.O., Schatzman, M.: Commutateurs de certains semi-groupes holomorphes et applications aux directions alternées. RAIRO Modél. Math. Anal. Numér. 30 (3), 343–383 (1996)
Duarte, M.: Méthodes numériques adaptatives pour la simulation de la dynamique de fronts de réaction multi-échelles en temps et en espace. Ph.D. thesis, Ecole Centrale Paris, France (2011)
Duarte, M., Descombes, S., Tenaud, C., Candel, S., Massot, M.: Time-space adaptive numerical methods for the simulation of combustion fronts. Combust. Flame 160, 1083–1101 (2013)
Duarte, M., Massot, M., Descombes, S., Tenaud, C., Dumont, T., Louvet, V., Laurent, F.: New resolution strategy for multi-scale reaction waves using time operator splitting and space adaptive multiresolution: Application to human ischemic stroke. ESAIM: Proc. 34, 277–290 (2011)
Duarte, M., Massot, M., Descombes, S., Tenaud, C., Dumont, T., Louvet, V., Laurent, F.: New resolution strategy for multiscale reaction waves using time operator splitting, space adaptive multiresolution and dedicated high order implicit/explicit time integrators. SIAM J. Sci. Comput. 34 (1), A76–A104 (2012)
Dumont, T., Duarte, M., Descombes, S., Dronne, M.A., Massot, M., Louvet, V.: Simulation of human ischemic stroke in realistic 3D geometry. Commun. Nonlinear Sci. Numer. Simul. 18 (6), 1539–1557 (2013)
Goyal, G., Paul, P., Mukunda, H., Deshpande, S.: Time dependent operator-split and unsplit schemes for one dimensional premixed flames. Combust. Sci. Technol. 60, 167–189 (1988)
Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer–Verlag, Berlin (2006)
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 2nd edn. Springer–Verlag, Berlin (1996)
Hansen, E., Ostermann, A.: High order splitting methods for analytic semigroups exist. BIT Numer. Math. 49, 527–542 (2009)
Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Comm. Pure Appl. Math. 48, 1305–1342 (1995)
van der Houwen, P., Sommeijer, B.: On the internal stability of explicit, m-stage Runge-Kutta methods for large m-values. Z. Angew. Math. Mech. 60 (10), 479–485 (1980)
Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer–Verlag, Berlin (2003)
Knio, O., Najm, H., Wyckoff, P.: A semi-implicit numerical scheme for reacting flow. II. Stiff, operator-split formulation. J. Comput. Phys. 154 (2), 428–467 (1999)
Koch, O., Neuhauser, C., Thalhammer, M.: Embedded exponential operator splitting methods for the time integration of nonlinear evolution equations. Appl. Numer. Math. 63, 14–24 (2013)
Kozlov, R., Kværnø, A., Owren, B.: The behaviour of the local error in splitting methods applied to stiff problems. J. Comput. Phys. 195 (2), 576–593 (2004)
Lanser, D., Verwer, J.: Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling. J. Comput. Appl. Math. 111 (1–2), 201–216 (1999)
Marchuk, G.: Some application of splitting-up methods to the solution of mathematical physics problems. Appl. Math. 13 (2), 103–132 (1968)
Müller, S.: Adaptive Multiscale Schemes for Conservation Laws, Lect. Notes Comput. Sci. Eng., vol. 27. Springer-Verlag (2003)
Najm, H., Knio, O.: Modeling low Mach number reacting flow with detailed chemistry and transport. J. Sci. Comput. 25 (1–2), 263–287 (2005)
Oran, E., Boris, J.: Numerical Simulation of Reacting Flows, 2nd edn. Cambridge University Press (2001)
Ren, Z., Xu, C., Lu, T., Singer, M.A.: Dynamic adaptive chemistry with operator splitting schemes for reactive flow simulations. J. Comput. Phys. 263 (0), 19–36 (2014)
Ropp, D., Shadid, J.: Stability of operator splitting methods for systems with indefinite operators: Reaction-diffusion systems. J. Comput. Phys. 203 (2), 449–466 (2005)
Safta, C., Ray, J., Najm, H.: A high-order low-Mach number AMR construction for chemically reacting flows. J. Comput. Phys. 229 (24), 9299–9322 (2010)
Schwer, D., Lu, P., Green, W., Semião, V.: A consistent-splitting approach to computing stiff steady-state reacting flows with adaptive chemistry. Combust. Theory Model. 7 (2), 383–399 (2003)
Sheng, Q.: Global error estimates for exponential splitting. IMA J. Numer. Anal. 14 (1), 27–56 (1994)
Singer, M., Pope, S.: Exploiting ISAT to solve the reaction-diffusion equation. Combust. Theory Model. 8 (2), 361–383 (2004)
Singer, M., Pope, S., Najm, H.: Modeling unsteady reacting flow with operator splitting and ISAT. Combust. Flame 147 (1–2), 150–162 (2006)
Sportisse, B.: An analysis of operator splitting techniques in the stiff case. J. Comput. Phys. 161 (1), 140–168 (2000)
Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)
Thévenin, D., Candel, S.: Ignition dynamics of a diffusion flame rolled up in a vortex. Phys. Fluids 7 (2), 434–445 (1995)
Trotter, H.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545–551 (1959)
Valorani, M., Goussis, D.: Explicit time-scale splitting algorithm for stiff problems: Auto-ignition of gaseous mixtures behind a steady shock. J. Comput. Phys. 169 (1), 44–79 (2001)
Verwer, J.: Explicit Runge-Kutta methods for parabolic partial differential equations. Appl. Numer. Math. 22 (1–3), 359–379 (1996)
Verwer, J.G., Spee, E.J., Blom, J.G., Hundsdorfer, W.: A second-order Rosenbrock method applied to photochemical dispersion problems. SIAM J. Sci. Comput. 20 (4), 1456–1480 (1999)
Yang, B., Pope, S.: An investigation of the accuracy of manifold methods and splitting schemes in the computational implementation of combustion chemistry. Combust. Flame 112 (1–2), 16–32 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Descombes, S., Duarte, M., Massot, M. (2016). Operator Splitting Methods with Error Estimator and Adaptive Time-Stepping. Application to the Simulation of Combustion Phenomena. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-41589-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41587-1
Online ISBN: 978-3-319-41589-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)