Abstract
In this chapter, we present a numerical method, based on iterative Bregman projections, to solve the optimal transport problem with Coulomb cost. This problem is related to the strong interaction limit of Density Functional Theory. The first idea is to introduce an entropic regularization of the Kantorovich formulation of the Optimal Transport problem. The regularized problem then corresponds to the projection of a vector on the intersection of the constraints with respect to the Kullback-Leibler distance. Iterative Bregman projections on each marginal constraint are explicit which enables us to approximate the optimal transport plan. We validate the numerical method against analytical test cases.
Keywords
- Density Functional Theory
- Lithium Atom
- Optimal Transport
- Transport Plan
- Alternate Projection
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options










References
Bauschke, H.H., Lewis, A.S.: Dykstra’s algorithm with Bregman projections: a convergence proof. Optimization 48 (4), 409–427 (2000)
Benamou, J.D., Carlier, G., Cuturi, M., Nenna, L., Peyré, G.: Iterative Bregman projections for regularized transportation problems. arXiv preprint arXiv:1412.5154 (2014)
Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics 7 (3), 200–217 (1967)
Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (4), 375–417 (1991)
Bunge, C.: The full CI density of the Li atom has been computed with a very large basis set with 8 s functions and up to k functions (private communication)
Buttazzo, G., De Pascale, L., Gori-Giorgi, P.: Optimal-transport formulation of electronic density-functional theory. Phys. Rev. A 85, 062,502 (2012)
Carlier, G., Ekeland, I.: Matching for teams. Econom. Theory 42 (2), 397–418 (2010)
Carlier, G., Oberman, A., Oudet, E.: Numerical methods for matching for teams and Wasserstein barycenters. arXiv preprint arXiv:1411.3602 (2014)
Colombo, M., De Pascale, L., Di Marino, S.: Multimarginal optimal transport maps for one-dimensional repulsive costs. Canad. J. Math. 67, 350–368 (2015)
Cominetti, R., Martin, J.S.: Asymptotic analysis of the exponential penalty trajectory in linear programming. Mathematical Programming 67 (1–3), 169–187 (1994)
Cotar, C., Friesecke, G., Klüppelberg, C.: Density functional theory and optimal transportation with Coulomb cost. Communications on Pure and Applied Mathematics 66 (4), 548–599 (2013)
Cotar, C., Friesecke, G., Pass, B.: Infinite-body optimal transport with Coulomb cost. Calculus of Variations and Partial Differential Equations 54 (1), 717–742 (2013)
Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems (NIPS) 26, pp. 2292–2300 (2013)
Freund, D.E., Huxtable, B.D., Morgan, J.D.: Variational calculations on the helium isoelectronic sequence. Phys. Rev. A 29, 980–982 (1984)
Friesecke, G., Mendl, C.B., Pass, B., Cotar, C., Klüppelberg, C.: N-density representability and the optimal transport limit of the Hohenberg-Kohn functional. Journal of Chemical Physics 139 (16), 164,109 (2013)
Galichon, A., Salanié, B.: Matching with trade-offs: Revealed preferences over competing characteristics. Tech. rep., Preprint SSRN-1487307 (2010)
Gangbo, W., Świȩch, A.: Optimal maps for the multidimensional Monge-Kantorovich problem. Comm. Pure Appl. Math. 51 (1), 23–45 (1998)
Ghoussoub, N., Maurey, B.: Remarks on multi-marginal symmetric Monge-Kantorovich problems. Discrete Contin. Dyn. Syst. 34 (4), 1465–1480 (2014)
Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: Segmentation and surface reconstruction. Journal of Scientific Computing 45 (1–3), 272–293 (2010)
Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)
Kantorovich, L.: On the transfer of masses (in Russian). Doklady Akademii Nauk 37 (2), 227–229 (1942)
Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)
Léonard, C.: From the Schrödinger problem to the Monge-Kantorovich problem. Journal of Functional Analysis 262 (4), 1879–1920 (2012)
Malet, F., Gori-Giorgi, P.: Strong correlation in Kohn-Sham density functional theory. Phys. Rev. Lett. 109, 246,402 (2012)
Mendl, C.B., Lin, L.: Kantorovich dual solution for strictly correlated electrons in atoms and molecules. Physical Review B 87 (12), 125,106 (2013)
Mérigot, Q.: A multiscale approach to optimal transport. In: Computer Graphics Forum, vol. 30, pp. 1583–1592. Wiley Online Library (2011)
Monge, G.: Mémoire sur la théorie des déblais et des remblais. De l’Imprimerie Royale (1781)
von Neumann, J.: On rings of operators. reduction theory. Annals of Mathematics 50 (2), pp. 401–485 (1949)
von Neumann, J.: Functional Operators. Princeton University Press, Princeton, NJ (1950)
Oberman, A., Yuanlong, R.: An efficient linear programming method for optimal transportation. In preparation
Pass, B.: Uniqueness and Monge solutions in the multimarginal optimal transportation problem. SIAM Journal on Mathematical Analysis 43 (6), 2758–2775 (2011)
Pass, B.: Multi-marginal optimal transport and multi-agent matching problems: uniqueness and structure of solutions. Discrete Contin. Dyn. Syst. 34 (4), 1623–1639 (2014)
Ruschendorf, L.: Convergence of the iterative proportional fitting procedure. The Annals of Statistics 23 (4), 1160–1174 (1995)
Ruschendorf, L., Thomsen, W.: Closedness of sum spaces and the generalized Schrodinger problem. Theory of Probability and its Applications 42 (3), 483–494 (1998)
Schmitzer, B.: A sparse algorithm for dense optimal transport. In: Scale Space and Variational Methods in Computer Vision, pp. 629–641. Springer, Berlin Heidelberg (2015)
Schrodinger, E.: Uber die umkehrung der naturgesetze. Sitzungsberichte Preuss. Akad. Wiss. Berlin. Phys. Math. 144, 144–153 (1931)
Seidl, M., Gori-Giorgi, P., Savin, A.: Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities. Phys. Rev. A 75, 042,511 (2007)
Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics Series. American Mathematical Society (2003)
Villani, C.: Optimal Transport: Old and New. Springer, Berlin Heidelberg (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Benamou, JD., Carlier, G., Nenna, L. (2016). A Numerical Method to Solve Multi-Marginal Optimal Transport Problems with Coulomb Cost. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-41589-5_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41587-1
Online ISBN: 978-3-319-41589-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)