Skip to main content

A Numerical Method to Solve Multi-Marginal Optimal Transport Problems with Coulomb Cost

Part of the Scientific Computation book series (SCIENTCOMP)

Abstract

In this chapter, we present a numerical method, based on iterative Bregman projections, to solve the optimal transport problem with Coulomb cost. This problem is related to the strong interaction limit of Density Functional Theory. The first idea is to introduce an entropic regularization of the Kantorovich formulation of the Optimal Transport problem. The regularized problem then corresponds to the projection of a vector on the intersection of the constraints with respect to the Kullback-Leibler distance. Iterative Bregman projections on each marginal constraint are explicit which enables us to approximate the optimal transport plan. We validate the numerical method against analytical test cases.

Keywords

  • Density Functional Theory
  • Lithium Atom
  • Optimal Transport
  • Transport Plan
  • Alternate Projection

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-41589-5_17
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-41589-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 17.1
Fig. 17.2
Fig. 17.3
Fig. 17.4
Fig. 17.5
Fig. 17.6
Fig. 17.7
Fig. 17.8
Fig. 17.9
Fig. 17.10

References

  1. Bauschke, H.H., Lewis, A.S.: Dykstra’s algorithm with Bregman projections: a convergence proof. Optimization 48 (4), 409–427 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Benamou, J.D., Carlier, G., Cuturi, M., Nenna, L., Peyré, G.: Iterative Bregman projections for regularized transportation problems. arXiv preprint arXiv:1412.5154 (2014)

    Google Scholar 

  3. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics 7 (3), 200–217 (1967)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (4), 375–417 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Bunge, C.: The full CI density of the Li atom has been computed with a very large basis set with 8 s functions and up to k functions (private communication)

    Google Scholar 

  6. Buttazzo, G., De Pascale, L., Gori-Giorgi, P.: Optimal-transport formulation of electronic density-functional theory. Phys. Rev. A 85, 062,502 (2012)

    CrossRef  Google Scholar 

  7. Carlier, G., Ekeland, I.: Matching for teams. Econom. Theory 42 (2), 397–418 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Carlier, G., Oberman, A., Oudet, E.: Numerical methods for matching for teams and Wasserstein barycenters. arXiv preprint arXiv:1411.3602 (2014)

    Google Scholar 

  9. Colombo, M., De Pascale, L., Di Marino, S.: Multimarginal optimal transport maps for one-dimensional repulsive costs. Canad. J. Math. 67, 350–368 (2015)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Cominetti, R., Martin, J.S.: Asymptotic analysis of the exponential penalty trajectory in linear programming. Mathematical Programming 67 (1–3), 169–187 (1994)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Cotar, C., Friesecke, G., Klüppelberg, C.: Density functional theory and optimal transportation with Coulomb cost. Communications on Pure and Applied Mathematics 66 (4), 548–599 (2013)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Cotar, C., Friesecke, G., Pass, B.: Infinite-body optimal transport with Coulomb cost. Calculus of Variations and Partial Differential Equations 54 (1), 717–742 (2013)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems (NIPS) 26, pp. 2292–2300 (2013)

    Google Scholar 

  14. Freund, D.E., Huxtable, B.D., Morgan, J.D.: Variational calculations on the helium isoelectronic sequence. Phys. Rev. A 29, 980–982 (1984)

    CrossRef  Google Scholar 

  15. Friesecke, G., Mendl, C.B., Pass, B., Cotar, C., Klüppelberg, C.: N-density representability and the optimal transport limit of the Hohenberg-Kohn functional. Journal of Chemical Physics 139 (16), 164,109 (2013)

    CrossRef  Google Scholar 

  16. Galichon, A., Salanié, B.: Matching with trade-offs: Revealed preferences over competing characteristics. Tech. rep., Preprint SSRN-1487307 (2010)

    Google Scholar 

  17. Gangbo, W., Świȩch, A.: Optimal maps for the multidimensional Monge-Kantorovich problem. Comm. Pure Appl. Math. 51 (1), 23–45 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Ghoussoub, N., Maurey, B.: Remarks on multi-marginal symmetric Monge-Kantorovich problems. Discrete Contin. Dyn. Syst. 34 (4), 1465–1480 (2014)

    MATH  MathSciNet  Google Scholar 

  19. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: Segmentation and surface reconstruction. Journal of Scientific Computing 45 (1–3), 272–293 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    CrossRef  MathSciNet  Google Scholar 

  21. Kantorovich, L.: On the transfer of masses (in Russian). Doklady Akademii Nauk 37 (2), 227–229 (1942)

    Google Scholar 

  22. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    CrossRef  MathSciNet  Google Scholar 

  23. Léonard, C.: From the Schrödinger problem to the Monge-Kantorovich problem. Journal of Functional Analysis 262 (4), 1879–1920 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  24. Malet, F., Gori-Giorgi, P.: Strong correlation in Kohn-Sham density functional theory. Phys. Rev. Lett. 109, 246,402 (2012)

    CrossRef  Google Scholar 

  25. Mendl, C.B., Lin, L.: Kantorovich dual solution for strictly correlated electrons in atoms and molecules. Physical Review B 87 (12), 125,106 (2013)

    CrossRef  Google Scholar 

  26. Mérigot, Q.: A multiscale approach to optimal transport. In: Computer Graphics Forum, vol. 30, pp. 1583–1592. Wiley Online Library (2011)

    Google Scholar 

  27. Monge, G.: Mémoire sur la théorie des déblais et des remblais. De l’Imprimerie Royale (1781)

    Google Scholar 

  28. von Neumann, J.: On rings of operators. reduction theory. Annals of Mathematics 50 (2), pp. 401–485 (1949)

    Google Scholar 

  29. von Neumann, J.: Functional Operators. Princeton University Press, Princeton, NJ (1950)

    MATH  Google Scholar 

  30. Oberman, A., Yuanlong, R.: An efficient linear programming method for optimal transportation. In preparation

    Google Scholar 

  31. Pass, B.: Uniqueness and Monge solutions in the multimarginal optimal transportation problem. SIAM Journal on Mathematical Analysis 43 (6), 2758–2775 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  32. Pass, B.: Multi-marginal optimal transport and multi-agent matching problems: uniqueness and structure of solutions. Discrete Contin. Dyn. Syst. 34 (4), 1623–1639 (2014)

    CrossRef  MATH  MathSciNet  Google Scholar 

  33. Ruschendorf, L.: Convergence of the iterative proportional fitting procedure. The Annals of Statistics 23 (4), 1160–1174 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  34. Ruschendorf, L., Thomsen, W.: Closedness of sum spaces and the generalized Schrodinger problem. Theory of Probability and its Applications 42 (3), 483–494 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  35. Schmitzer, B.: A sparse algorithm for dense optimal transport. In: Scale Space and Variational Methods in Computer Vision, pp. 629–641. Springer, Berlin Heidelberg (2015)

    Google Scholar 

  36. Schrodinger, E.: Uber die umkehrung der naturgesetze. Sitzungsberichte Preuss. Akad. Wiss. Berlin. Phys. Math. 144, 144–153 (1931)

    MATH  Google Scholar 

  37. Seidl, M., Gori-Giorgi, P., Savin, A.: Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities. Phys. Rev. A 75, 042,511 (2007)

    CrossRef  Google Scholar 

  38. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics Series. American Mathematical Society (2003)

    CrossRef  MATH  Google Scholar 

  39. Villani, C.: Optimal Transport: Old and New. Springer, Berlin Heidelberg (2009)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-David Benamou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Benamou, JD., Carlier, G., Nenna, L. (2016). A Numerical Method to Solve Multi-Marginal Optimal Transport Problems with Coulomb Cost. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_17

Download citation