Abstract
In this survey chapter we give an overview of recent applications of the splitting method to stochastic (partial) differential equations, that is, differential equations that evolve under the influence of noise. We discuss weak and strong approximations schemes. The applications range from the management of risk, financial engineering, optimal control, and nonlinear filtering to the viscosity theory of nonlinear SPDEs.
This is a preview of subscription content, access via your institution.
Buying options





Notes
- 1.
Named after the botanist Robert Brown who observed in 1827 that pollen grains suspended in water execute continuous but jittery motions. The physical explanation was given by Albert Einstein in 1905 (his “annus mirabilis”: small water molecules hit the pollen) and a little earlier Marian Smoluchowski had already emphasized the importance of this process for physics. Further important contributions are due to Louis Bachelier, Andrey Kolmogorov, Paul Lévy, Joseph Doob, Norbert Wiener, and finally Kyoshi Ito
- 2.
More precisely, the relevant property of the Brownian motion here is that B is a martingale. Geometrically, this is an orthogonality relation between the increments B t − B s and the path up to time s. Hence, the construction works in a geometric L 2(Ω) sense which allows to take advantage of this structure.
- 3.
There are some subtle measure-theoretic issues which we gloss over but refer the reader to [1] for more details.
- 4.
For example \(E\left [\int _{0}^{t}\vert h(X_{s})\vert ^{2}ds\right ] < \infty \),\(E\left [\int _{0}^{t}Z_{s}\vert h(X_{s})\vert ^{2}ds\right ] < \infty \) and \(\tilde{\mathbb{P}}\left [\int _{0}^{t}[\rho _{s}(\vert h\vert )]^{2}ds < \infty \right ] = 1\) is sufficient where \(Z_{s} =\exp \left (-\sum _{i}\int _{0}^{s}h^{i}(X_{r})dB_{r}^{i} -\frac{1} {2}\int _{0}^{s}h^{i}(X_{r})^{2}dr\right )\) ; see [1, Chapter 3]
- 5.
That is, even without any numerical error, it is generally not possible to obtain a perfect fit to market prices, due to the model limitations.
- 6.
By which we do not mean difficult-to-evaluate series expansions, Bessel functions or similar solutions. Instead, we mean formulas with comparable complexity to the vector fields themselves.
References
Bain, A., Crişan, D.: Fundamentals of stochastic filtering. Applications of mathematics. Springer (2008)
Bayer, C., Friz, P., Loeffen, R.: Semi-closed form cubature and applications to financial diffusion models. Quant. Finance 13 (5), 769–782 (2013). DOI 10.1080/14697688.2012.752102. URL http://dx.doi.org/10.1080/14697688.2012.752102
Bayer, C., Gatheral, J., Karlsmark, M.: Fast Ninomiya-Victoir calibration of the double-mean-reverting model. Quantitative Finance 13 (11), 1813–1829 (2013)
Bayer, C., Laurence, P.: Asymptotics beats Monte Carlo: The case of correlated CEV baskets. Comm. Pure Appl. Math. 67 (10), 1618–1657 (2014)
Bayer, C., Teichmann, J.: Cubature on Wiener space in infinite dimension. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 464 (2097), 2493–2516 (2008). DOI 10.1098/rspa.2008.0013. URL http://dx.doi.org/10.1098/rspa.2008.0013
Bensoussan, A., Glowinski, R.: Approximation of Zakai equation by the splitting up method. In: Stochastic systems and optimization (Warsaw, 1988), Lecture Notes in Control and Inform. Sci., vol. 136, pp. 257–265. Springer, Berlin (1989)
Bensoussan, A., Glowinski, R., Răşcanu, A.: Approximation of the Zakai equation by the splitting up method. SIAM J. Control Optim. 28 (6), 1420–1431 (1990). DOI 10.1137/0328074. URL http://dx.doi.org/10.1137/0328074
Bensoussan, A., Glowinski, R., Răşcanu, A.: Approximation of some stochastic differential equations by the splitting up method. Appl. Math. Optim. 25 (1), 81–106 (1992). DOI 10.1007/BF01184157. URL http://dx.doi.org/10.1007/BF01184157
Björk, T., Szepessy, A., Tempone, R., Zouraris, G.E.: Monte Carlo Euler approximations of HJM term structure financial models. BIT 53 (2), 341–383 (2013)
Brigo, D., Hanzon, B.: On some filtering problems arising in mathematical finance. Insurance: Mathematics and Economics 22 (1), 53–64 (1998)
Brockett, R.W.: Volterra series and geometric control theory. Automatica 12 (2), 167–176 (1976). DOI 10.1016/0005-1098(76) 90080-7. URL http://www.sciencedirect.com/science/article/pii/0005109876900807
Caruana, M., Friz, P., Oberhauser, H.: A (rough) pathwise approach to a class of non-linear stochastic partial differential equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (1), 27–46 (2011). DOI 10.1016/j.anihpc.2010.11.002. URL http://dx.doi.org/10.1016/j.anihpc.2010.11.002
Clark, J.: The design of robust approximations to stochastic differential equations in nonlinear filtering. In: J. Skwirzynsky (ed.) Communication Systems in Random Processes Theory. Sijthoff, Nordhoff (1978)
Clark, J., Crisan, D.: On a robust version of the integral representation formula of nonlinear filtering. Probability theory and related fields 133 (1), 43–56 (2005)
Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1), 1–67 (1992)
Crisan, D., Diehl, J., Friz, P. K., Oberhauser, H.: Robust filtering: correlated noise and multidimensional observation. The Annals of Applied Probability 23 (5), 2139–2160 (2013)
Crisan, D., Rozovskii, B.: The Oxford Handbook of Nonlinear Filtering. Oxford Handbooks. Oxford University Press (2011). URL http://books.google.com/books?id=XYP_3szwkIoC
Csomós, P., Faragó, I., Havasi, Á.: Weighted sequential splittings and their analysis. Comput. Math. Appl. 50 (7), 1017–1031 (2005). DOI 10.1016/j.camwa.2005.08.004. URL http://dx.doi.org/10.1016/j.camwa.2005.08.004
Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992). DOI 10.1017/CBO9780511666223. URL http://dx.doi.org/10.1017/CBO9780511666223
Debussche, A.: Weak approximation of stochastic partial differential equations: the nonlinear case. Math. Comp. 80 (273), 89–117 (2011). DOI 10.1090/S0025-5718-2010-02395-6. URL http://dx.doi.org/10.1090/S0025-5718-2010-02395-6
Diehl, J., Friz, P., Gassiat, P.: Stochastic control with rough paths. P. Appl. Math. Optim. (2016). URL http://dx.doi.org/10.1007/s00245-016-9333-9
Diehl, J., Oberhauser, H., Riedel, S.: A Lévy area between Brownian motion and rough paths with applications to robust nonlinear filtering and rough partial differential equations. Stoch. Process. Appl. 125 (1), 161–181 (2015)
Dörsek, P., Teichmann, J.: A semi-group point of view on splitting schemes for stochastic (partial) differential equations (2010). Preprint
Dörsek, P., Teichmann, J.: Efficient simulation and calibration of general HJM models by splitting schemes. SIAM J. Financial Math. 4 (1), 575–598 (2013). DOI 10.1137/110860173. URL http://dx.doi.org/10.1137/110860173
Elliott, R.J., Glowinski, R.: Approximations to solutions of the Zakai filtering equation. Stochastic Analysis and Applications 7 (2), 145–168 (1989)
Fleming, W.H., Soner, H.M.: Controlled Markov processes and viscosity solutions, Stochastic Modelling and Applied Probability, vol. 25, second edn. Springer, New York (2006)
Fliess, M.: Fonctionnelles causales non linéaires et indéterminées non commutatives. Bull. Soc. Math. France 109 (1), 3–40 (1981)
Florchinger, P., Le Gland, F.: Time-discretization of the Zakai equation for diffusion processes observed in correlated noise. Stochastics Stochastics Rep. 35 (4), 233–256 (1991)
Frey, R., Runggaldier, W.J.: A nonlinear filtering approach to volatility estimation with a view towards high frequency data. International Journal of Theoretical and Applied Finance 4 (02), 199–210 (2001)
Friz, P., Hairer, M.: A Course on Rough Paths: With an Introduction to Regularity Structures. Universitext. Springer International Publishing (2014)
Friz, P., Oberhauser, H.: On the splitting-up method for rough (partial) differential equations. Journal of Differential Equations 251 (2), 316–338 (2011). DOI 10.1016/j.jde.2011.02.009. URL http://www.sciencedirect.com/science/article/pii/S0022039611000763
Friz, P., Oberhauser, H.: Rough path stability of (semi-)linear SPDEs. Probability Theory and Related Fields pp. 1–34 (2013). DOI 10.1007/s00440-013-0483-2. URL http://dx.doi.org/10.1007/s00440-013-0483-2
Friz, P.K., Victoir, N.B.: Multidimensional stochastic processes as rough paths: theory and applications. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010)
Gatheral, J.: Consistent modeling of SPX and VIX options (2008). Presentation at Bachelier Congress: London
Gençay, R., Selçuk, F., Whitcher, B.J.: An introduction to wavelets and other filtering methods in finance and economics. Access Online via Elsevier (2001)
Gubinelli, M.: Controlling rough paths. J. Funct. Anal. 216 (1), 86–140 (2004)
Gyöngy, I., Krylov, N.: On the splitting-up method and stochastic partial differential equations. Ann. Probab. 31 (2), 564–591 (2003). DOI 10.1214/aop/1048516528
Gyöngy, I., Krylov, N.: Accelerated numerical schemes for PDEs and SPDEs. In: Stochastic analysis 2010, pp. 131–168. Springer, Heidelberg (2011)
Hausenblas, E.: Approximation for semilinear stochastic evolution equations. Potential Anal. 18 (2), 141–186 (2003). DOI 10.1023/A:1020552804087. URL http://dx.doi.org/10.1023/A:1020552804087
Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica 60 (1), 77–105 (1992)
Hida, T.: Brownian motion. Springer (1980)
Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes, second edn. North-Holland Publishing Co., Amsterdam (1989)
Jentzen, A., Kloeden, P.E.: The numerical approximation of stochastic partial differential equations. Milan J. Math. 77, 205–244 (2009). DOI 10.1007/s00032-009-0100-0. URL http://dx.doi.org/10.1007/s00032-009-0100-0
Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol. 113, second edn. Springer-Verlag, New York (1991)
Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations, Applications of Mathematics (New York), vol. 23. Springer-Verlag, Berlin (1992)
Kohatsu-Higa, A., Tankov, P.: Jump-adapted discretization schemes for Lévy-driven SDEs. Stochastic Process. Appl. 120 (11), 2258–2285 (2010). DOI 10.1016/j.spa.2010.07.001. URL http://dx.doi.org/10.1016/j.spa.2010.07.001
Kusuoka, S.: Approximation of expectation of diffusion processes based on Lie algebra and Malliavin calculus. In: Advances in mathematical economics. Vol. 6, Adv. Math. Econ., vol. 6, pp. 69–83. Springer, Tokyo (2004)
Le Gland, F.: Splitting-up approximation for SPDEs and SDEs with application to nonlinear filtering. In: Stochastic partial differential equations and their applications (Charlotte, NC, 1991), Lecture Notes in Control and Inform. Sci., vol. 176, pp. 177–187. Springer, Berlin (1992). DOI 10.1007/BFb0007332. URL http://dx.doi.org/10.1007/BFb0007332
Lototsky, S., Mikulevicius, R., Rozovskii, B.L.: Nonlinear filtering revisited: a spectral approach. SIAM J. Control Optim. 35 (2), 435–461 (1997). DOI 10.1137/S0363012993248918. URL http://dx.doi.org/10.1137/S0363012993248918
Lyons, T.: Differential equations driven by rough signals. I. An extension of an inequality of L. C. Young. Math. Res. Lett. 1 (4), 451–464 (1994)
Lyons, T.: Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (2), 215–310 (1998)
Lyons, T.: Systems controlled by rough paths. In: European Congress of Mathematics, pp. 269–281. Eur. Math. Soc., Zürich (2005)
Lyons, T., Qian, Z.: System Control and Rough Paths. Oxford University Press (2002). Oxford Mathematical Monographs
Lyons, T., Victoir, N.: Cubature on Wiener space. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2041), 169–198 (2004). DOI 10.1098/rspa.2003.1239. URL http://dx.doi.org/10.1098/rspa.2003.1239
Lyons, T.J., Caruana, M., Lévy, T.: Differential equations driven by rough paths, Lecture Notes in Mathematics, vol. 1908. Springer, Berlin (2007). Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004, With an introduction concerning the Summer School by Jean Picard
Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM review 10 (4), 422–437 (1968)
Nagase, N.: Remarks on nonlinear stochastic partial differential equations: an application of the splitting-up method. SIAM J. Control Optim. 33 (6), 1716–1730 (1995). DOI 10.1137/S036301299324618X. URL http://dx.doi.org/10.1137/S036301299324618X
Ninomiya, M.: Application of the Kusuoka approximation with a tree-based branching algorithm to the pricing of interest-rate derivatives under the HJM model. LMS J. Comput. Math. 13, 208–221 (2010). DOI 10.1112/S146115700800048X. URL http://dx.doi.org/10.1112/S146115700800048X
Ninomiya, S., Victoir, N.: Weak approximation of stochastic differential equations and application to derivative pricing. Appl. Math. Finance 15 (1-2), 107–121 (2008). DOI 10.1080/13504860701413958. URL http://dx.doi.org/10.1080/13504860701413958
Øksendal, B.: Stochastic differential equations. Springer (2003)
Protter, P.E.: Stochastic integration and differential equations, Applications of Mathematics (New York), vol. 21, second edn. Springer-Verlag, Berlin (2004). Stochastic Modelling and Applied Probability
Protter, P.E.: Stochastic integration and differential equations, Stochastic Modelling and Applied Probability, vol. 21. Springer-Verlag, Berlin (2005). Second edition. Version 2.1, Corrected third printing
Răşcanu, A., Tudor, C.: Approximation of stochastic equations by the splitting up method. In: Qualitative problems for differential equations and control theory, pp. 277–287. World Sci. Publ., River Edge, NJ (1995)
Revuz, D., Yor, M.: Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, third edn. Springer-Verlag, Berlin (1999)
Schwab, C., Gittelson, C.J.: Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 20, 291–467 (2011). DOI 10.1017/S0962492911000055. URL http://dx.doi.org/10.1017/S0962492911000055
Sun, M., Glowinski, R.: Pathwise approximation and simulation for the Zakai filtering equation through operator splitting. Calcolo 30 (3), 219–239 (1994) (1993). DOI 10.1007/BF02575854. URL http://dx.doi.org/10.1007/BF02575854
Sussmann, H.: Semigroup representations, bilinear approximation of input-output maps, and generalized inputs. Mathematical systems theory 131 (1975)
Teichmann, J.: Another approach to some rough and stochastic partial differential equations. Stochastics and Dynamics 11 (02n03), 535–550 (2011)
Yan, Y.: Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43 (4), 1363–1384 (electronic) (2005). DOI 10.1137/040605278. URL http://dx.doi.org/10.1137/040605278
Acknowledgements
Harald Oberhauser is grateful for the support of the ERC (grant agreement No.291244 Esig) and the Oxford-Man Institute of Quantitative finance.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Bayer, C., Oberhauser, H. (2016). Splitting Methods for SPDEs: From Robustness to Financial Engineering, Optimal Control, and Nonlinear Filtering. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-41589-5_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41587-1
Online ISBN: 978-3-319-41589-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)