Skip to main content

Splitting Methods for SPDEs: From Robustness to Financial Engineering, Optimal Control, and Nonlinear Filtering

  • 3299 Accesses

Part of the Scientific Computation book series (SCIENTCOMP)

Abstract

In this survey chapter we give an overview of recent applications of the splitting method to stochastic (partial) differential equations, that is, differential equations that evolve under the influence of noise. We discuss weak and strong approximations schemes. The applications range from the management of risk, financial engineering, optimal control, and nonlinear filtering to the viscosity theory of nonlinear SPDEs.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-41589-5_15
  • Chapter length: 41 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-41589-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2
Fig. 15.3
Fig. 15.4
Fig. 15.5

Notes

  1. 1.

    Named after the botanist Robert Brown who observed in 1827 that pollen grains suspended in water execute continuous but jittery motions. The physical explanation was given by Albert Einstein in 1905 (his “annus mirabilis”: small water molecules hit the pollen) and a little earlier Marian Smoluchowski had already emphasized the importance of this process for physics. Further important contributions are due to Louis Bachelier, Andrey Kolmogorov, Paul Lévy, Joseph Doob, Norbert Wiener, and finally Kyoshi Ito

  2. 2.

    More precisely, the relevant property of the Brownian motion here is that B is a martingale. Geometrically, this is an orthogonality relation between the increments B t B s and the path up to time s. Hence, the construction works in a geometric L 2(Ω) sense which allows to take advantage of this structure.

  3. 3.

    There are some subtle measure-theoretic issues which we gloss over but refer the reader to [1] for more details.

  4. 4.

    For example \(E\left [\int _{0}^{t}\vert h(X_{s})\vert ^{2}ds\right ] < \infty \),\(E\left [\int _{0}^{t}Z_{s}\vert h(X_{s})\vert ^{2}ds\right ] < \infty \) and \(\tilde{\mathbb{P}}\left [\int _{0}^{t}[\rho _{s}(\vert h\vert )]^{2}ds < \infty \right ] = 1\) is sufficient where \(Z_{s} =\exp \left (-\sum _{i}\int _{0}^{s}h^{i}(X_{r})dB_{r}^{i} -\frac{1} {2}\int _{0}^{s}h^{i}(X_{r})^{2}dr\right )\) ; see [1, Chapter 3]

  5. 5.

    That is, even without any numerical error, it is generally not possible to obtain a perfect fit to market prices, due to the model limitations.

  6. 6.

    By which we do not mean difficult-to-evaluate series expansions, Bessel functions or similar solutions. Instead, we mean formulas with comparable complexity to the vector fields themselves.

References

  1. Bain, A., Crişan, D.: Fundamentals of stochastic filtering. Applications of mathematics. Springer (2008)

    MATH  Google Scholar 

  2. Bayer, C., Friz, P., Loeffen, R.: Semi-closed form cubature and applications to financial diffusion models. Quant. Finance 13 (5), 769–782 (2013). DOI 10.1080/14697688.2012.752102. URL http://dx.doi.org/10.1080/14697688.2012.752102

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Bayer, C., Gatheral, J., Karlsmark, M.: Fast Ninomiya-Victoir calibration of the double-mean-reverting model. Quantitative Finance 13 (11), 1813–1829 (2013)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Bayer, C., Laurence, P.: Asymptotics beats Monte Carlo: The case of correlated CEV baskets. Comm. Pure Appl. Math. 67 (10), 1618–1657 (2014)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Bayer, C., Teichmann, J.: Cubature on Wiener space in infinite dimension. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 464 (2097), 2493–2516 (2008). DOI 10.1098/rspa.2008.0013. URL http://dx.doi.org/10.1098/rspa.2008.0013

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Bensoussan, A., Glowinski, R.: Approximation of Zakai equation by the splitting up method. In: Stochastic systems and optimization (Warsaw, 1988), Lecture Notes in Control and Inform. Sci., vol. 136, pp. 257–265. Springer, Berlin (1989)

    Google Scholar 

  7. Bensoussan, A., Glowinski, R., Răşcanu, A.: Approximation of the Zakai equation by the splitting up method. SIAM J. Control Optim. 28 (6), 1420–1431 (1990). DOI 10.1137/0328074. URL http://dx.doi.org/10.1137/0328074

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Bensoussan, A., Glowinski, R., Răşcanu, A.: Approximation of some stochastic differential equations by the splitting up method. Appl. Math. Optim. 25 (1), 81–106 (1992). DOI 10.1007/BF01184157. URL http://dx.doi.org/10.1007/BF01184157

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Björk, T., Szepessy, A., Tempone, R., Zouraris, G.E.: Monte Carlo Euler approximations of HJM term structure financial models. BIT 53 (2), 341–383 (2013)

    MATH  MathSciNet  Google Scholar 

  10. Brigo, D., Hanzon, B.: On some filtering problems arising in mathematical finance. Insurance: Mathematics and Economics 22 (1), 53–64 (1998)

    MATH  MathSciNet  Google Scholar 

  11. Brockett, R.W.: Volterra series and geometric control theory. Automatica 12 (2), 167–176 (1976). DOI 10.1016/0005-1098(76) 90080-7. URL http://www.sciencedirect.com/science/article/pii/0005109876900807

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Caruana, M., Friz, P., Oberhauser, H.: A (rough) pathwise approach to a class of non-linear stochastic partial differential equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (1), 27–46 (2011). DOI 10.1016/j.anihpc.2010.11.002. URL http://dx.doi.org/10.1016/j.anihpc.2010.11.002

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Clark, J.: The design of robust approximations to stochastic differential equations in nonlinear filtering. In: J. Skwirzynsky (ed.) Communication Systems in Random Processes Theory. Sijthoff, Nordhoff (1978)

    Google Scholar 

  14. Clark, J., Crisan, D.: On a robust version of the integral representation formula of nonlinear filtering. Probability theory and related fields 133 (1), 43–56 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1), 1–67 (1992)

    Google Scholar 

  16. Crisan, D., Diehl, J., Friz, P. K., Oberhauser, H.: Robust filtering: correlated noise and multidimensional observation. The Annals of Applied Probability 23 (5), 2139–2160 (2013)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Crisan, D., Rozovskii, B.: The Oxford Handbook of Nonlinear Filtering. Oxford Handbooks. Oxford University Press (2011). URL http://books.google.com/books?id=XYP_3szwkIoC

  18. Csomós, P., Faragó, I., Havasi, Á.: Weighted sequential splittings and their analysis. Comput. Math. Appl. 50 (7), 1017–1031 (2005). DOI 10.1016/j.camwa.2005.08.004. URL http://dx.doi.org/10.1016/j.camwa.2005.08.004

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992). DOI 10.1017/CBO9780511666223. URL http://dx.doi.org/10.1017/CBO9780511666223

    CrossRef  MATH  Google Scholar 

  20. Debussche, A.: Weak approximation of stochastic partial differential equations: the nonlinear case. Math. Comp. 80 (273), 89–117 (2011). DOI 10.1090/S0025-5718-2010-02395-6. URL http://dx.doi.org/10.1090/S0025-5718-2010-02395-6

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Diehl, J., Friz, P., Gassiat, P.: Stochastic control with rough paths. P. Appl. Math. Optim. (2016). URL http://dx.doi.org/10.1007/s00245-016-9333-9

  22. Diehl, J., Oberhauser, H., Riedel, S.: A Lévy area between Brownian motion and rough paths with applications to robust nonlinear filtering and rough partial differential equations. Stoch. Process. Appl. 125 (1), 161–181 (2015)

    CrossRef  MATH  Google Scholar 

  23. Dörsek, P., Teichmann, J.: A semi-group point of view on splitting schemes for stochastic (partial) differential equations (2010). Preprint

    Google Scholar 

  24. Dörsek, P., Teichmann, J.: Efficient simulation and calibration of general HJM models by splitting schemes. SIAM J. Financial Math. 4 (1), 575–598 (2013). DOI 10.1137/110860173. URL http://dx.doi.org/10.1137/110860173

    CrossRef  MATH  MathSciNet  Google Scholar 

  25. Elliott, R.J., Glowinski, R.: Approximations to solutions of the Zakai filtering equation. Stochastic Analysis and Applications 7 (2), 145–168 (1989)

    CrossRef  MATH  MathSciNet  Google Scholar 

  26. Fleming, W.H., Soner, H.M.: Controlled Markov processes and viscosity solutions, Stochastic Modelling and Applied Probability, vol. 25, second edn. Springer, New York (2006)

    Google Scholar 

  27. Fliess, M.: Fonctionnelles causales non linéaires et indéterminées non commutatives. Bull. Soc. Math. France 109 (1), 3–40 (1981)

    MATH  MathSciNet  Google Scholar 

  28. Florchinger, P., Le Gland, F.: Time-discretization of the Zakai equation for diffusion processes observed in correlated noise. Stochastics Stochastics Rep. 35 (4), 233–256 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  29. Frey, R., Runggaldier, W.J.: A nonlinear filtering approach to volatility estimation with a view towards high frequency data. International Journal of Theoretical and Applied Finance 4 (02), 199–210 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  30. Friz, P., Hairer, M.: A Course on Rough Paths: With an Introduction to Regularity Structures. Universitext. Springer International Publishing (2014)

    CrossRef  MATH  Google Scholar 

  31. Friz, P., Oberhauser, H.: On the splitting-up method for rough (partial) differential equations. Journal of Differential Equations 251 (2), 316–338 (2011). DOI 10.1016/j.jde.2011.02.009. URL http://www.sciencedirect.com/science/article/pii/S0022039611000763

    CrossRef  MATH  MathSciNet  Google Scholar 

  32. Friz, P., Oberhauser, H.: Rough path stability of (semi-)linear SPDEs. Probability Theory and Related Fields pp. 1–34 (2013). DOI 10.1007/s00440-013-0483-2. URL http://dx.doi.org/10.1007/s00440-013-0483-2

  33. Friz, P.K., Victoir, N.B.: Multidimensional stochastic processes as rough paths: theory and applications. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010)

    CrossRef  MATH  Google Scholar 

  34. Gatheral, J.: Consistent modeling of SPX and VIX options (2008). Presentation at Bachelier Congress: London

    Google Scholar 

  35. Gençay, R., Selçuk, F., Whitcher, B.J.: An introduction to wavelets and other filtering methods in finance and economics. Access Online via Elsevier (2001)

    Google Scholar 

  36. Gubinelli, M.: Controlling rough paths. J. Funct. Anal. 216 (1), 86–140 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  37. Gyöngy, I., Krylov, N.: On the splitting-up method and stochastic partial differential equations. Ann. Probab. 31 (2), 564–591 (2003). DOI 10.1214/aop/1048516528

    CrossRef  MATH  MathSciNet  Google Scholar 

  38. Gyöngy, I., Krylov, N.: Accelerated numerical schemes for PDEs and SPDEs. In: Stochastic analysis 2010, pp. 131–168. Springer, Heidelberg (2011)

    Google Scholar 

  39. Hausenblas, E.: Approximation for semilinear stochastic evolution equations. Potential Anal. 18 (2), 141–186 (2003). DOI 10.1023/A:1020552804087. URL http://dx.doi.org/10.1023/A:1020552804087

  40. Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica 60 (1), 77–105 (1992)

    CrossRef  MATH  Google Scholar 

  41. Hida, T.: Brownian motion. Springer (1980)

    Google Scholar 

  42. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes, second edn. North-Holland Publishing Co., Amsterdam (1989)

    MATH  Google Scholar 

  43. Jentzen, A., Kloeden, P.E.: The numerical approximation of stochastic partial differential equations. Milan J. Math. 77, 205–244 (2009). DOI 10.1007/s00032-009-0100-0. URL http://dx.doi.org/10.1007/s00032-009-0100-0

    CrossRef  MATH  MathSciNet  Google Scholar 

  44. Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol. 113, second edn. Springer-Verlag, New York (1991)

    Google Scholar 

  45. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations, Applications of Mathematics (New York), vol. 23. Springer-Verlag, Berlin (1992)

    CrossRef  MATH  Google Scholar 

  46. Kohatsu-Higa, A., Tankov, P.: Jump-adapted discretization schemes for Lévy-driven SDEs. Stochastic Process. Appl. 120 (11), 2258–2285 (2010). DOI 10.1016/j.spa.2010.07.001. URL http://dx.doi.org/10.1016/j.spa.2010.07.001

    CrossRef  MATH  MathSciNet  Google Scholar 

  47. Kusuoka, S.: Approximation of expectation of diffusion processes based on Lie algebra and Malliavin calculus. In: Advances in mathematical economics. Vol. 6, Adv. Math. Econ., vol. 6, pp. 69–83. Springer, Tokyo (2004)

    Google Scholar 

  48. Le Gland, F.: Splitting-up approximation for SPDEs and SDEs with application to nonlinear filtering. In: Stochastic partial differential equations and their applications (Charlotte, NC, 1991), Lecture Notes in Control and Inform. Sci., vol. 176, pp. 177–187. Springer, Berlin (1992). DOI 10.1007/BFb0007332. URL http://dx.doi.org/10.1007/BFb0007332

  49. Lototsky, S., Mikulevicius, R., Rozovskii, B.L.: Nonlinear filtering revisited: a spectral approach. SIAM J. Control Optim. 35 (2), 435–461 (1997). DOI 10.1137/S0363012993248918. URL http://dx.doi.org/10.1137/S0363012993248918

    CrossRef  MATH  MathSciNet  Google Scholar 

  50. Lyons, T.: Differential equations driven by rough signals. I. An extension of an inequality of L. C. Young. Math. Res. Lett. 1 (4), 451–464 (1994)

    MATH  Google Scholar 

  51. Lyons, T.: Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (2), 215–310 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  52. Lyons, T.: Systems controlled by rough paths. In: European Congress of Mathematics, pp. 269–281. Eur. Math. Soc., Zürich (2005)

    Google Scholar 

  53. Lyons, T., Qian, Z.: System Control and Rough Paths. Oxford University Press (2002). Oxford Mathematical Monographs

    Google Scholar 

  54. Lyons, T., Victoir, N.: Cubature on Wiener space. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2041), 169–198 (2004). DOI 10.1098/rspa.2003.1239. URL http://dx.doi.org/10.1098/rspa.2003.1239

    CrossRef  MATH  MathSciNet  Google Scholar 

  55. Lyons, T.J., Caruana, M., Lévy, T.: Differential equations driven by rough paths, Lecture Notes in Mathematics, vol. 1908. Springer, Berlin (2007). Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004, With an introduction concerning the Summer School by Jean Picard

    Google Scholar 

  56. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM review 10 (4), 422–437 (1968)

    CrossRef  MATH  MathSciNet  Google Scholar 

  57. Nagase, N.: Remarks on nonlinear stochastic partial differential equations: an application of the splitting-up method. SIAM J. Control Optim. 33 (6), 1716–1730 (1995). DOI 10.1137/S036301299324618X. URL http://dx.doi.org/10.1137/S036301299324618X

    CrossRef  MATH  MathSciNet  Google Scholar 

  58. Ninomiya, M.: Application of the Kusuoka approximation with a tree-based branching algorithm to the pricing of interest-rate derivatives under the HJM model. LMS J. Comput. Math. 13, 208–221 (2010). DOI 10.1112/S146115700800048X. URL http://dx.doi.org/10.1112/S146115700800048X

    CrossRef  MATH  MathSciNet  Google Scholar 

  59. Ninomiya, S., Victoir, N.: Weak approximation of stochastic differential equations and application to derivative pricing. Appl. Math. Finance 15 (1-2), 107–121 (2008). DOI 10.1080/13504860701413958. URL http://dx.doi.org/10.1080/13504860701413958

    CrossRef  MATH  MathSciNet  Google Scholar 

  60. Øksendal, B.: Stochastic differential equations. Springer (2003)

    Google Scholar 

  61. Protter, P.E.: Stochastic integration and differential equations, Applications of Mathematics (New York), vol. 21, second edn. Springer-Verlag, Berlin (2004). Stochastic Modelling and Applied Probability

    Google Scholar 

  62. Protter, P.E.: Stochastic integration and differential equations, Stochastic Modelling and Applied Probability, vol. 21. Springer-Verlag, Berlin (2005). Second edition. Version 2.1, Corrected third printing

    Google Scholar 

  63. Răşcanu, A., Tudor, C.: Approximation of stochastic equations by the splitting up method. In: Qualitative problems for differential equations and control theory, pp. 277–287. World Sci. Publ., River Edge, NJ (1995)

    Google Scholar 

  64. Revuz, D., Yor, M.: Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, third edn. Springer-Verlag, Berlin (1999)

    Google Scholar 

  65. Schwab, C., Gittelson, C.J.: Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 20, 291–467 (2011). DOI 10.1017/S0962492911000055. URL http://dx.doi.org/10.1017/S0962492911000055

    CrossRef  MATH  MathSciNet  Google Scholar 

  66. Sun, M., Glowinski, R.: Pathwise approximation and simulation for the Zakai filtering equation through operator splitting. Calcolo 30 (3), 219–239 (1994) (1993). DOI 10.1007/BF02575854. URL http://dx.doi.org/10.1007/BF02575854

  67. Sussmann, H.: Semigroup representations, bilinear approximation of input-output maps, and generalized inputs. Mathematical systems theory 131 (1975)

    Google Scholar 

  68. Teichmann, J.: Another approach to some rough and stochastic partial differential equations. Stochastics and Dynamics 11 (02n03), 535–550 (2011)

    Google Scholar 

  69. Yan, Y.: Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43 (4), 1363–1384 (electronic) (2005). DOI 10.1137/040605278. URL http://dx.doi.org/10.1137/040605278

Download references

Acknowledgements

Harald Oberhauser is grateful for the support of the ERC (grant agreement No.291244 Esig) and the Oxford-Man Institute of Quantitative finance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Oberhauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bayer, C., Oberhauser, H. (2016). Splitting Methods for SPDEs: From Robustness to Financial Engineering, Optimal Control, and Nonlinear Filtering. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_15

Download citation