Abstract
This chapter deals with decentralized learning algorithms for in-network processing of graph-valued data. A generic learning problem is formulated and recast into a separable form, which is iteratively minimized using the alternating-direction method of multipliers (ADMM) so as to gain the desired degree of parallelization. Without exchanging elements from the distributed training sets and keeping inter-node communications at affordable levels, the local (per-node) learners consent to the desired quantity inferred globally, meaning the one obtained if the entire training data set were centrally available. Impact of the decentralized learning framework to contemporary wireless communications and networking tasks is illustrated through case studies including target tracking using wireless sensor networks, unveiling Internet traffic anomalies, power system state estimation, as well as spectrum cartography for wireless cognitive radio networks.
Keywords
- Basis Expansion Model
- Random Geometric Graph
- Well Linear Unbiased Estimation
- Optimal Primal Solution
- Minimal Sufficient Statistic
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options









References
Abur, A., Gomez-Exposito, A.: Power System State Estimation: Theory and Implementation. Marcel Dekker, New York, NY (2004)
Albaladejo, C., Sanchez, P., Iborra, A., Soto, F., Lopez, J. A., Torres, R.: Wireless sensor networks for oceanographic monitoring: A systematic review. Sensors. 10, 6948–6968 (2010)
Anderson, B. D., Moore, J. B.: Optimal Filtering. Prentice Hall, Englewood Cliffs, NJ (1979)
Barbarossa, S., Scutari, G.: Decentralized maximum likelihood estimation for sensor networks composed of nonlinearly coupled dynamical systems. IEEE Trans. Signal Process. 55 3456–3470 (2007)
Bazerque, J. A., Giannakis, G. B.: Distributed spectrum sensing for cognitive radio networks by exploiting sparsity. IEEE Trans. Signal Process. 58, 1847–1862 (2010)
Bazerque, J. A., Mateos, G., Giannakis, G. B.: Group Lasso on splines for spectrum cartography. IEEE Trans. Signal Process. 59, 4648–4663 (2011)
Bertsekas, D. P., Tsitsiklis, J. N.: Parallel and distributed computation: Numerical methods. 2nd Edition, Athena Scientific, Boston (1997)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press, UK (2004)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)
Boyer, T. P., Antonov, J. I., Garcia, H. E., Johnson, D. R., Locarnini, R. A., Mishonov, A. V., Pitcher, M. T., Baranova, O. K., Smolyar, I. V.: World Ocean Database. NOAA Atlas NESDIS. 60, 190 (2005)
Candes, E. J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? Journal of the ACM. 58, 1–37 (2011)
Candes, E. J., Tao, T.: Decoding by linear programming. IEEE Trans. Info. Theory. 51, 4203–4215 (2005)
Cattivelli, F. S., Lopes, C. G., Sayed, A. H.: Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Trans. Signal Process. 56, 1865–1877 (2008)
Chandrasekaran, V., Sanghavi, S., Parrilo, P. R., Willsky, A. S.: Rank-sparsity incoherence for matrix decomposition. SIAM J. Optim. 21, 572–596 (2011)
Chang, T., Hong, M., Wang, X.: Multiagent distributed large-scale optimization by inexact consensus alternating direction method of multipliers. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (2014)
Chen, A. and Ozdaglar, A.: A fast distributed proximal-gradient method. In: Proceedings of Allerton Conference on Communication, Control, and Computing (2012)
Dall’Anese, E., Kim, S. J., Giannakis, G. B.: Channel gain map tracking via distributed kriging. IEEE Trans. Vehicular Tech. 60, 1205–1211 (2011)
Dall’Anese, E., Zhu, H., Giannakis, G. B.: Distributed optimal power flow for smart microgrids. IEEE Trans. on Smart Grid, 4, 1464–1475 (2013)
Davis, D., Yin, W.: Convergence rate analysis of several splitting schemes. In: R. Glowinski, S. Osher, W. Yin (eds.) Splitting Methods in Communication and Imaging, Science and Engineering. Springer (2016)
Deng, W., Lai, M., Peng, Z., Yin, W.: Parallel multi-block ADMM with o(1∕k) convergence. arXiv preprint arXiv:1312.3040 (2013)
Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. Manuscript, Journal of Scientific Computing, 66 (3):889–916 (2106)
Dimakis, A., Kar, S., Moura, J. M. F., Rabbat, M., Scaglione, A.: Gossip algorithms for distributed signal processing. Proc. of the IEEE. 89, 1847–1864 (2010)
Donoho, D. L.: Compressed sensing. IEEE Trans. Info. Theory. 52, 1289–1306 (2006)
Duchi, J., Agarwal, A., Wainwright, M.: Dual averaging for distributed optimization: Convergence analysis and network scaling. IEEE Trans. on Autom. Control, 57 592–606 (2012)
Duda, R. O., Hart, P. E., Stork, D. G.: Pattern Classification. 2nd edition, Wiley, NY (2002)
Eckstein, J., Bertsekas, D.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming 55, 293–318 (1992)
Farahmand, S., Roumeliotis, S. I., Giannakis, G. B.: Set-membership constrained particle filter: Distributed adaptation for sensor networks. IEEE Trans. Signal Process. 59, 4122–4138 (2011)
Fazel, M.: Matrix rank minimization with applications. Ph.D. dissertation, Electrical Eng. Dept., Stanford University (2002)
Forero, P., Cano, A., Giannakis, G. B.: Consensus-based distributed support vector machines. Journal of Machine Learning Research. 11, 1663–1707 (2010)
Forero, P., Cano, A., Giannakis, G. B.: Distributed clustering using wireless sensor networks. IEEE Journal of Selected Topics in Signal Processing. 5, 707–724 (2011)
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comp. Math. Appl. 2, 17–40 (1976)
Giannakis, G. B., Kekatos, V., Gatsis, N., Kim, S.-J., Zhu, H., Wollenberg, B. F.: Monitoring and Optimization for Power Grids: A Signal Processing Perspective. IEEE Signal Processing Magazine, 30, 107–128 (2013)
Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’orde un, et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet non-linéaires. Rev. Francaise d‘Aut. Inf. Rech. Oper. 2, 41–76 (1975)
He, B., Yuan, X.: On the O(1∕t) convergence rate of the alternating direction method. SIAM Journal on Numerical Analysis 50, 700–709 (2012)
He, B., Yuan, X.: On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers. Manuscript (2012)
Hlinka, O., Hlawatsch, F., Djuric, P. M.: Distributed particle filtering in agent networks. IEEE Signal Process. Mag. 30, 61–81 (2013)
Jakovetic, D., Xavier, J., Moura, J.: Fast distributed gradient methods. Manuscript
Kay, S.: Fundamentals of statistical signal processing: Estimation theory. Prentice-Hall, Englewood Cliffs (1993)
Kim, S.-J., Dall’Anese, E., Bazerque, J. A., Rajawat, K., Giannakis, G. B.: Advances in spectrum sensing and cross-layer design for cognitive radio networks. Elsevier E-Reference Signal Processing (2012)
Kushner, H. J., Yin, G. G.: Stochastic approximation and recursive algorithms and applications. 2nd Edition, Springer, Berlin, Germany (2003)
Lakhina, A., Crovella, M., Diot, C.: Diagnosing network-wide traffic anomalies. Proc. ACM SIGCOMM. Portland, OR (2004)
Ling, Q., Ribeiro, A.: Decentralized dynamic optimization through the alternating direction method of multipliers. IEEE Transactions on Signal Processing 62, 1185–1197 (2014)
Ling, Q., Ribeiro, A.: Decentralized linearized alternating direction method of multipliers. In: Proceedings of IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing (2014)
Lloyd, S. P.: Least-squares quantization in PCM. IEEE Trans. on Info. Theory. 28, 129–137 (1982)
Lopes, C. G., Sayed, A. H.: Incremental adaptive strategies over distributed networks,” IEEE Trans. Signal Process. 55, 4064–4077 (2007)
Lopes, C. G., Sayed, A. H.: Diffusion least-mean squares over adaptive networks: Formulation and performance analysis. IEEE Trans. Signal Process. 56, 3122–3136 (2008)
Lu, Y., Roychowdhury, V., Vandenberghe, L.: Distributed parallel support vector machines in strongly connected networks. IEEE Tran. on Neural Networks. 19, 1167–1178 (2008)
Mardani, M., Mateos, G., Giannakis, G. B.: Decentralized sparsity-regularized rank minimization: Algorithms and applications. IEEE Trans. Signal Process. 61, 5374–5388 (2013)
Mardani, M., Mateos, G., Giannakis, G. B.: Dynamic Anomalography: Tracking Network Anomalies via Sparsity and Low Rank. IEEE Journal of Selected Topics in Signal Process. 7, 50–66 (2013)
Mardani, M., Mateos, G., Giannakis, G. B.: Recovery of low-rank plus compressed sparse matrices with application to unveiling traffic anomalies. IEEE Trans. Info. Theory. 59, 5186–5205 (2013)
Mateos, G., Bazerque, J. A., Giannakis, G. B.: Distributed sparse linear regression. IEEE Trans. Signal Process. 58, 5262–5276 (2010)
Mateos, G., Giannakis, G. B.: Distributed recursive least-squares: Stability and performance analysis. IEEE Trans. Signal Process. 60, 3740–3754 (2012)
Mateos, G., Rajawat, K.: Dynamic network cartography. IEEE Signal Process. Mag. 30, 29–143 (2013)
Mateos, G., Schizas, I. D., Giannakis, G. B.: Distributed recursive least-squares for consensus-based in-network adaptive estimation. IEEE Trans. Signal Process. 57, 4583–4588 (2009)
Mateos, G., Schizas, I. D., Giannakis, G. B.: Performance analysis of the consensus-based distributed LMS algorithm. EURASIP J. Advances Signal Process. Article ID 981030, 1–19 (2009)
Navia-Vazquez, A., Gutierrez-Gonzalez, D., Parrado-Hernandez, E., Navarro-Abellan, J. J.: Distributed support vector machines. IEEE Tran. on Neural Networks. 17, 1091–1097 (2006)
Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multiagent optimization. IEEE Transactions on Automatic Control, 54, 48–61 (2009)
Nowak, R. D.: Distributed EM algorithms for density estimation and clustering in sensor networks. IEEE Trans. on Signal Processing. 51, 2245–2253 (2003)
Olfati-Saber, R.: Distributed Kalman filter with embedded consensus filters. Proc. 44th IEEE Conf. Decision and Control. Seville, Spain (2005)
Rabbat, M., Nowak, R.: Quantized incremental algorithms for distributed optimization. IEEE Journal on Selected Areas in Communications, 23, 798–808 (2005)
Rabbat, M., Nowak, R., Bucklew, J.: Generalized consensus computation in networked systems with erasure links. In: Proceedings of IEEE International Workshop on Signal Processing Advances for Wireless Communications (2005)
Ram, S., Nedic, A., Veeravalli, V.: Distributed stochastic subgradient projection algorithms for convex optimization. Journal of Optimization Theory and Applications, 147, 516–545 (2010)
Ribeiro, A., Schizas, I. D, Roumeliotis, S. I., Giannakis, G. B.: Kalman filtering in wireless sensor networks: Incorporating communication cost in state estimation problems. IEEE Control Syst. Mag. 30, 66–86 (2010)
Ripley, B. D.: Spatial Statistics. Wiley, Hoboken, New Jersey (1981)
Roughan, M.: A case study of the accuracy of SNMP measurements. Journal of Electrical and Computer Engineering. Article ID 812979 (2010)
Saligrama, V., Alanyali, M., Savas, O.: Distributed detection in sensor networks with packet losses and finite capacity links. IEEE Trans. on Signal Processing. 54, 4118–4132 (2006)
Schizas, I. D., G. B. Giannakis, G. B.: Consensus-Based Distributed Estimation of Random Signals with Wireless Sensor Networks, Proc. of 40th Asilomar Conf. on Signals, Systems, and Computers, 530–534, Pacific Grove, CA (2006)
Schizas, I. D., Giannakis, G. B., Roumeliotis, S. I., Ribeiro, A.: Consensus in ad hoc WSNs with noisy links - Part II: Distributed estimation and smoothing of random signals. IEEE Trans. Signal Process. 56, 1650–1666 (2008)
Schizas, I. D., Mateos, G., Giannakis, G. B.: Distributed LMS for consensus-based in-network adaptive processing. IEEE Trans. Signal Process. 57, 2365–2381 (2009)
Schizas, I. D., Ribeiro, A., Giannakis, G. B.: Consensus in ad hoc WSNs with noisy links - Part I: Distributed estimation of deterministic signals. IEEE Trans. Signal Process. 56, 350–364 (2008)
Schölkopf, B., Smola, A.: Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Boston (2002)
Shi, W., Ling, Q., Wu, G., Yin, W.: EXTRA: An exact first-order algorithm for decentralized consensus optimization. SIAM Journal on Optimization, 25 (2), 944–966 (2015)
Shi, W., Ling, Q., Yuan, K., Wu, G., Yin, W.: On the linear convergence of the ADMM in decentralized consensus optimization. IEEE Transactions on Signal Processing (2014)
Solo, V., Kong., X.: Adaptive signal processing algorithms: Stability and performance. Prentice-Hall, Englewood Cliffs (1995)
Srebro, N., Shraibman, A.: Rank, trace-norm and max-norm. Proc. 44th Learning Theory. Springer, 545–560 (2005)
Stoica, P., Moses, R.: Spectral Analysis of Signals. Prentice Hall (2005)
Tsianos, K. and Rabbat, M.: Distributed dual averaging for convex optimization under communication delays. Proc. of American Control Conference (2012)
Wang, H., Banerjee, A.: Online alternating direction method. arXiv preprint arXiv:1306.3721 (2013)
Wei, E., Ozdaglar, A.: Distributed alternating direction method of multipliers. Proc. Decision and Control Conference (2012)
Wen, Z., Goldfarb, D., Yin W.: Alternating direction augmented Lagrangian methods for semidefinite programming. Math. Prog. Comp. 2, 203–230 (2010)
Wolfe, J., Haghighi, A., Klein, D.: Fully distributed EM for very large datasets. Proc. 25th Intl. Conference on Machine Learning. Helsinki, Finland (2008)
Wood A. J., Wollenberg, B. F.: Power Generation, Operation, and Control. Wiley & Sons, New York, NY (1984)
Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Syst. Control Lett. 53, 65–78(2004)
Xiao, L., Boyd, S., Kim, S. J.: Distributed average consensus with least-mean-square deviation. Journal of Parallel and Distributed Computing. 67, 33–46 (2007)
Yuan, K., Ling, Q., Yin, W.: On the convergence of decentralized gradient descent. SIAM Journal Optimization, 26 (3): 1835–1854 (2016)
Zhang, Y., Ge, Z., Greenberg, A., Roughan, M.: Network anomography. Proc. ACM SIGCOM Conf. on Internet Measurements. Berkeley, CA (2005)
Zhu, H., Giannakis, G. B.: Power System Nonlinear State Estimation using Distributed Semidefinite Programming. IEEE Journal of Special Topics in Signal Processing, 8, 1039–1050 (2014)
Zhu, H., Cano, A., Giannakis, G. B.: Distributed consensus-based demodulation: algorithms and error analysis. IEEE Trans. on Wireless Comms. 9, 2044–2054 (2010)
Zhu, H., Giannakis, G. B., Cano, A.: Distributed in-network channel decoding. IEEE Trans. on Signal Processing. 57, 3970–3983 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Giannakis, G.B., Ling, Q., Mateos, G., Schizas, I.D., Zhu, H. (2016). Decentralized Learning for Wireless Communications and Networking. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-41589-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41587-1
Online ISBN: 978-3-319-41589-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)