Advertisement

Nonparametric Estimation of Heavy-Tailed Density by the Discrepancy Method

  • Natalia MarkovichEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 175)

Abstract

The nonparametric estimation of the probability density function (pdf) requires smoothing parameters like bandwidths of kernel estimates. We consider the so-called discrepancy method proposed in [13, 14, 21] as a data-driven smoothing tool and alternative to cross-validation. It is based on the von Mises-Smirnov’s (M-S) and the Kolmogorov–Smirnov’s (K-S) nonparametric statistics as measures in the space of distribution functions (cdfs). The unknown smoothing parameter is found as a solution of the discrepancy equation. On its left-hand side stands the measure between the empirical distribution function and the nonparametric estimate of the cdf. The latter is obtained as a corresponding integral of the pdf estimator. The right-hand side is equal to a quantile of the asymptotic distribution of the M-S or K-S statistic. The discrepancy method considered earlier for light-tailed pdfs is investigated now for heavy-tailed pdfs.

Keywords

Heavy-tailed density Kernel estimator Bandwidth Discrepancy method 

Notes

Acknowledgments

This work was supported in part by the Russian Foundation for Basic Research, grant 13-08-00744.

References

  1. 1.
    Abramson, I.S.: On bandwidth estimation in kernel estimators—a square root law. Ann. Stat. 10, 1217–1223 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bolshev, L.N., Smirnov, N.V.: Tables of Mathematical Statistics. Nauka, Moscow (1965) (in Russian)Google Scholar
  3. 3.
    Bowman, A.W.: An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71(2), 353–360 (1984)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis. Oxford University Press (1997)Google Scholar
  5. 5.
    Cao, R., Cuevas, A., Fraiman, R.: Minimum distance density-based estimation. Comput. Stat. Data Anal. 20, 611–631 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, S.X.: Probability density function estimation using gamma kernels. Ann. Inst. Stat. Math. 52(3), 471–480 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Devroye, L., Györfi, L.: Nonparametric Density Estimation. The \(L_1\) View. Wiley, New York (1985)Google Scholar
  8. 8.
    Dobrovidov A.V., Markovich L.A.: Data-driven bandwidth choice for gamma kernel estimates of density derivatives on the positive semi-axis. In: Proceedings of IFAC International Workshop on Adaptation and Learning in Control and Signal Processing, pp. 500–505. Caen, France, 3–5 July (2013). doi: 10.3182/20130703-3-FR-4038.00086, arXiv:1401.6801 Google Scholar
  9. 9.
    Hall, P., Sheather, S.J., Jones, M.C., Marron, J.S.: On optimal data-based bandwidth selection in kernel density estimation. Biometrika 78, 263–269 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Loader, C.R.: Bandwidth selection: classical or plug-in? Ann. Stat. 27(2), 415–438 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Markovich, L.A.: Nonparametric gamma kernel estimators of density derivatives on positive semiaxis by dependent data. RevStat Stat. J. (2016). arXiv:1401.6783 (in appear)
  12. 12.
    Markovich, L.A.: Nonparametric estimation of multivariate density and its derivative by dependent data using gamma kernels. Submitted J. Nonparametric Stat. (2016). arXiv:1410.2507
  13. 13.
    Markovich, N.M.: Experimental analysis of nonparametric probability density estimates and of methods for smoothing them. Autom. Remote Control 50, 941–948 (1989)Google Scholar
  14. 14.
    Markovich, N.M.: Nonparametric Analysis of Univariate Heavy-Tailed Data. Wiley, Chichester (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Markovich, N.M.: Nonparametric estimation of extremal index using discrepancy method. In: Proceedings of the X International Conference System Identification and Control Problems SICPRO-2015, pp. 160–168. V.A. Trapeznikov Institute of Control Sciences, Moscow, 26–29 Jan 2015. ISBN: 978-5-91450-162-1Google Scholar
  16. 16.
    Martynov, G.V.: Omega-Square Criteria. Nauka, Moscow (1978) (in Russian)Google Scholar
  17. 17.
    Rudemo, M.: Empirical choice of histogram and kernel density estimators. Scand. J. Stat. 9, 65–78 (1982)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Sheather, S.J., Jones, M.C.: A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Stat. Soc. Ser. B 53(3), 683–690 (1991)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Scott, D.W.: Multivariate Density Estimation. Theory, Practice, and Visualization. Wiley, New York, Chichester (1992)Google Scholar
  20. 20.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London, New York (1986)CrossRefzbMATHGoogle Scholar
  21. 21.
    Vapnik, V.N., Markovich, N.M., Stefanyuk, A.R.: Rate of convergence in \(L_2\) of the projection estimator of the distribution density. Autom. Remote Control 53, 677–686 (1992)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Zambom, A.Z., Dias, R.: A Review of Kernel Density Estimation with Applications to Econometrics (2012). arXiv:1212.2812

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.V.A. Trapeznikov Institute of Control Sciences of Russian Academy of SciencesMoscowRussia

Personalised recommendations