Testing for Breaks in Regression Models with Dependent Data

  • J. HidalgoEmail author
  • V. Dalla
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 175)


The paper examines a test for smoothness/breaks in a nonparametric regression model with dependent data. The test is based on the supremum of the difference between the one-sided kernel regression estimates. When the errors of the model exhibit strong dependence, we have that the normalization constants to obtain the asymptotic Gumbel distribution are data dependent and the critical values are difficult to obtain, if possible. This motivates, together with the fact that the rate of convergence to the Gumbel distribution is only logarithmic, the use of a bootstrap analogue of the test. We describe a valid bootstrap algorithm and show its asymptotic validity. It is interesting to remark that neither subsampling nor the sieve bootstrap will lead to asymptotic valid inferences in our scenario. Finally, we indicate how to perform a test for k breaks against the alternative of \(k+k_{0}\) breaks for some \(k_{0}\).


Nonparametric regression Breaks/smoothness Strong dependence Extreme-values distribution Frequency domain bootstrap algorithms 



We like to thank Marie Huskova for their comments on a previous version of the paper. Of course, any remaining errors are our sole responsibility.


  1. 1.
    Antoch, J., Gregoire, G., Huskova, M.: Tests for continuity of regression function. J. Stat. Plan. Inference 137, 753–777 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bilckel, P.J., Rosenblatt, M.: On some global measures of the deviations of density function estimates. Ann. Stat. 1, 1071–1095 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Billingsley, P.: Convergence of Probability Measures. Wiley and Sons, New York (1968)zbMATHGoogle Scholar
  4. 4.
    Brillinger, D.R.: Time Series, Data Analysis and Theory. Holden-Day, San Francisco (1981)zbMATHGoogle Scholar
  5. 5.
    Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bühlmann, P.: Sieve-bootstrap for time series. Bernoulli 3, 123–148 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chu, J.S., Wu, C.K.: Kernel-type estimators of jump points and values of a regression function. Ann. Stat. 21, 1545–1566 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Delgado, M.A., Hidalgo, J.: Nonparametric inference on structural breaks. J. Econom. 96, 113–144 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fuller, W.A.: Introduction to Statistical Time Series. Wiley and Sons, New York (1996)zbMATHGoogle Scholar
  10. 10.
    Giacomini, R., Politis, D.N., White, H.: A warp-speed method for conducting Monte cargo experiments involving bootstrap estimators. Econom. Theory 29, 567–589 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Giné, E., Zinn, J.: Necessary conditions for the bootstrap of the mean. Ann. Stat. 17, 684–691 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hall, P.: On convergence rates of suprema. Probab. Theory Relat. Fields 89, 447–455 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Härdle, W., Marron, J.S.: Bootstrapping simultaneous error bars for nonparametric regression. Ann. Stat. 19, 778–796 (1991)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hidalgo, J.: A nonparametric conditional moment test for structural stability. Econom. Theory 11, 671–698 (1995)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hidalgo, J.: Specification testing for regression models with dependent data, STICERD EM/2007/518. J. Econom. 143, 143–165 (2007). Published versionGoogle Scholar
  16. 16.
    Hidalgo, J., Yajima, Y.: Prediction in the frequency domain under long-range processes with application to the signal extraction problem. Econom. Theory 18, 584–624 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hurvich, C.M., Zeger, S.L.: Frequency domain bootstrap methods for time series. Technical report 87-115, Graduate School of Business Administration, New York University (1987)Google Scholar
  18. 18.
    Hušková, M., Kirch, C., Prášková, Z., Steinebach, J.: On the detection of changes in autoregressive time series, II. resampling procedures. J. Stat. Plan. Inference 138, 1697–1721 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kreiss, J.-P., Paparoditis, E.: Autoregressive-aided periodogram bootstrap for time series. Ann. Stat. 31, 1923–1955 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Künsch, H.A.: The jackknife and the bootstrap for general stationary observations. Ann. Stat. 17, 1217–1241 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Marinucci, D., Robinson, P.M.: Weak convergence of multivariate fractional processes. Stoch. Process. Appl. 80, 103–120 (2003)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Müller, H.-J.: Change-points in nonparametric regression analysis. Ann. Stat. 20, 737–761 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Perron, P.: Dealing with structural breaks. In: Mills T.C., Patterson, K. (eds.) Palgrave Handbook of Econometrics, Chapter 8, vol. 1 (2006)Google Scholar
  24. 24.
    Pickands, J.: Asymptotic properties of the maximum in a stationary gaussian process. Trans. Am. Math. Soc. 145, 75–86 (1969)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Pollard, D.: Convergence Stochastic Processes. Springer, New York (1980)zbMATHGoogle Scholar
  26. 26.
    Rice, J.: Boundary modification for kernel regression. Commun. Stat. Theory and Methods 13, 893–900 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Robinson, P.M.: Log-Periodogram regression for time series with long range dependence. Ann. Stat. 23, 1048–1072 (1995a)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Robinson, P.M.: Gaussian semiparametric estimation of long-range dependence. Ann. Stat. 23, 1630–1661 (1995b)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Robinson, P.M.: Large-sample inference for nonparametric regression with dependent errors. Ann. Stat. 25, 2054–2083 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Serfling, R.J.: Approximation Theorems of Mathematical Statistics. Wiley and Sons, New York (1980)CrossRefzbMATHGoogle Scholar
  31. 31.
    Woodroofe, M.: On the maximum deviation of the sample density. Ann. Math. Stat. 38, 475–481 (1967)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.London School of EconomicsLondonUK
  2. 2.National and Kapodistrian University of AthensAthensGreece

Personalised recommendations