Advertisement

Discrimination, Binomials and Glass Ceiling Effects

  • María Paz EspinosaEmail author
  • Eva FerreiraEmail author
  • Winfried Stute
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 175)

Abstract

We discuss dynamic models designed to describe the evolution of gender gaps deriving from the nature of the social decision processes. In particular, we study the committee choice function that maps a present committee composition to its future composition. The properties of this function and the decision mechanisms will determine the characteristics of the stochastic process that drives the dynamics over time and the long run equilibrium. We also discuss how to estimate the committee choice function parametrically and nonparametrically using conditional maximum likelihood.

Keywords

Conditional nonparametric estimation Gender gap dynamics 

Notes

Acknowledgments

Financial support from ME (ECO2012-35820, ECO2011-29268 and ECO2014-51914-P), the Basque Government (DEUI, IT-313-07) and UPV/EHU (UFI 11/46 BETS) is gratefully acknowledged.

References

  1. 1.
    Arulampalam, W., Booth, A.L., Bryan, M.L.: Is there a glass ceiling over Europe? Exploring the gender pay gap across the wages distribution. Ind. Labor Relat. Rev. 60(2), 163–186 (2007)CrossRefGoogle Scholar
  2. 2.
    Bain, O., Cummings, W.: Academe’s glass ceiling: societal, professional-organizational, and institutional barriers to the career advancement of academicwomen. Comp. Educ. Rev. 44(4), 493–514 (2000)CrossRefGoogle Scholar
  3. 3.
    Billingsley, P.: Statistical Inference for Markov Processes. University of Chicago Statistical Research Monographs, University of Chicago Press, Institute of Mathematical Statistics. MR 23, no. A746 (1961)Google Scholar
  4. 4.
    Cotter, D.A., Hermsen, J.M., Ovadia, S., Vanneman, R.: The glass ceiling effect. Soc. Forces 80(2), 655–681 (2001)CrossRefGoogle Scholar
  5. 5.
    De la Rica, S., Dolado, J.J., Llorens, V.: Ceilings or floors? Gender wage gaps by education in Spain. J. Popul. Econ. 21(3), 751–776 (2008)Google Scholar
  6. 6.
    Ferreira, E., Stute, W.: Dynamic binomials with an application to gender bias analysis. J. Appl. Probab. 53(1), 82–90 (2016)Google Scholar
  7. 7.
    Härdle, W.: Applied Nonparametric Regression. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  8. 8.
    May, K.O.: A set of independent, necessary and sufficient conditions for simple majority decision. Econometrica 20, 680–684 (1952)CrossRefzbMATHGoogle Scholar
  9. 9.
    May, K.O.: Intransitivity, utility, and the aggregation of preference patterns. Econometrica 22, 1–13 (1954)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Meitz, M., Saikkonen, P.: A note on the geometric ergodicity of a nonlinear AR-ARCH model. Stat. Probab. Lett. 80, 631–638 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Morgan, L.A.: Glass-ceiling effect or cohort effect? A longitudinal study of the gender earnings gap for engineers, 1982 to 1989. Am. Sociol. Rev. 63(4), 479–493 (1998)CrossRefGoogle Scholar
  12. 12.
    Wand, M., Jones, M.: Kernel Smoothing. Chapman and Hall, London (1995)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Departamento de Fundamentos del Análisis Económico II, BRiDGE, BETSUniversity of the Basque CountryBilbaoSpain
  2. 2.Departamento de Economía Aplicada III & BETSUniversity of the Basque CountryBilbaoSpain
  3. 3.Mathematical Institute, University of GiessenGiessenGermany

Personalised recommendations