Skip to main content

Using Holography and Particle Image Velocimetry to Study Particle Deposition, Re-suspension and Agglomeration

  • Chapter
  • First Online:
Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 571))

  • 1033 Accesses

Abstract

In this chapter two experimental imaging techniques, holography and particle image velocimetry (PIV), and their application to particle dispersed flows are discussed. Special emphasis is put on particle deposition, re-suspension and agglomeration processes. In the first two chapters the theoretical background of the techniques is presented indicating theoretical and practical limitations of both techniques. In consecutive chapters, several case studies are presented illustrating the use of both techniques. During the last decade tomographic PIV has become the leading technique in 3D flow measurements that opens up exciting new research possibilities in particle-dispersed flows. In addition, refractive index matched techniques are discussed enabling researchers to measure in detail the simultaneous coupling between finite-sized particles and turbulent flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari, D., & Longmire, E. K. (2012). Visual hull method for tomographic PIV measurement of flow around moving objects. Experiments in Fluids, 53, 943–964. http://doi.org/10.1007/s00348-012-1338-9.

  • Adrian, R. J. (2007). Hairpin vortex organization in wall turbulence. Physics of Fluids, 19, 041301. http://doi.org/10.1063/1.2717527.

  • Adrian, R. J., Christensen, K. T., & Liu, Z.-C. (2000). Analysis and interpretation of instantaneous turbulent velocity fields. Experiments in Fluids, 29, 275–290. http://doi.org/10.1007/s003489900087.

  • Ancey, C., Bigillon, F., Frey, P., Lanier, J., & Ducret, R. (2002). Saltating motion of a bead in a rapid water stream. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 66, 1–16. http://doi.org/10.1103/PhysRevE.66.036306.

  • Aylor, D. E., Schultes, N. P., & Shields E. J. (2003). An aerobiological framework for assessing cross-pollination in maize. Agricultural and Forest Meteorology, 119, 111–129.

    Google Scholar 

  • Bagnold, R. A. (1951). The movement of a cohesionless granular bed by fluid flow over it. British Journal of Applied Physics, 2, 29–34. http://doi.org/10.1088/0508-3443/2/2/301.

  • Bellani, G., Byron, M. L., Collignon, A. G., Meyer, C. R., & Variano, E. (2012). Shape effects on turbulent modulation by large neutrally buoyant particles. Journal of Fluid Mechanics, 712, 41–60.

    Google Scholar 

  • Bianchi, D. E., Schwemmin, D. J., & Wagner, W. H, Jr. (1959). Pollen release in the common ragweed (Ambrosia artemisiifolia). Botanical Gazette, 120, 235–243.

    Article  Google Scholar 

  • Born, M., & Wolf, E. (1999). Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Braaten, D. A., Paw U, K. T., & Shaw, R. H. (1990). Particle resuspension in a turbulent boundary layer-observed and modeled. Journal of Aerosol Science, 21, 613–628. http://doi.org/10.1016/0021-8502(90)90117-G.

  • Byron, M. L., & Variano, E. A. (2013). Refractive-index-matched hydrogel materials for measuring flow-structure interactions. Experiments in Fluids, 54, 1456. http://doi.org/10.1007/s00348-013-1456-z.

  • Choi, Y.-S., & Lee, S.-J. (2009). Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy. Applied Optics, 48, 2983–2990. http://doi.org/10.1364/AO.48.002983.

  • Choi, Y.-S., & Lee, S.-J. (2011). High-accuracy three-dimensional position measurement of tens of micrometers size transparent microspheres using digital in-line holographic microscopy. Optics Letters36, 4167. http://doi.org/10.1364/OL.36.004167.

  • Chong, M. S., Perry, A. E., & Cantwell, B. J. (1990). A general classification of three-dimensional flow fields. Physics of Fluids A: Fluid Dynamics, 2, 765–777. http://doi.org/10.1063/1.857730.

  • Cleaver, J., & Yates, B. (1973). Mechanism of detachment of colloidal particles from a flat substrate in a turbulent flow. Journal of Colloid and Interface Science, 44, 464–474. http://doi.org/10.1016/0021-9797(73)90323-8.

  • Collier, R. (2013). Optical holography. Elsevier.

    Google Scholar 

  • Elsinga, G. E., & Westerweel, J. (2010). Tomographic-PIV measurement of the flow around a zigzag boundary layer trip. In 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics. Lisbon, Portugal, 05–08 July (pp. 5–8).

    Google Scholar 

  • Elsinga, G. E., Adrian, R. J., van Oudheusden, B. W., & Scarano, F. (2010). Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer. Journal of Fluid Mechanics, 644, 35–60. http://doi.org/10.1017/S0022112009992047.

  • Elsinga, G. E., Scarano, F., Wieneke, B., & Van Oudheusden, B. W. (2006). Tomographic particle image velocimetry. Experiments in Fluids, 41, 933–947. http://doi.org/10.1007/s00348-006-0212-z.

  • Elsinga, G. E., Westerweel, J., Scarano, F., & Novara, M. (2011). On the velocity of ghost particles and the bias errors in Tomographic-PIV. Experiments in Fluids, 50, 825–838. http://doi.org/10.1007/s00348-010-0930-0.

  • Ferrante, A., & Elghobashi, S. (2004). On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles. Journal of Fluid Mechanics, 503, 345–355.

    Google Scholar 

  • Fessler, J., Kulick, J., & Eaton, J. (1994). Preferential concentration of heavy particles in a turbulent channel flow. Physics of Fluids, 6, 3742–3749. http://doi.org/10.1063/1.868445.

  • Fournier, C., Ducottet, C., & Fournel, T. (2004). Digital in-line holography: influence of the reconstruction function on the axial profile of a reconstructed particle image. Measurement Science and Technology, 15, 686–693. http://doi.org/10.1088/0957-0233/15/4/010.

  • Francis, J. R. D. (1973). Experiments on the motion of solitary grains along the bed of a water-stream. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 332, 443–471. http://doi.org/10.1098/rspa.1973.0037.

  • Gabor, D. (1948). A new microscopic principle. Nature, 161, 777–778. http://doi.org/10.1038/161777a0.

  • Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing. Prentice Hall, Inc.

    Google Scholar 

  • Goodman, J. W. (2005). Introduction to Fourier optics. Roberts and Company Publishers.

    Google Scholar 

  • Hall, D. (1989). The time dependence of particle resuspension. Journal of Aerosol Science, 20, 907–910.

    Google Scholar 

  • Hariharan, P. (1996). Optical Holography: Principles, techniques and applications. Cambridge University Press.

    Google Scholar 

  • Hunt, J. C. R., Wray, A. A., & Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. In Center for Turbulence Research, Proceedings of the Summer Program (pp. 193–208).

    Google Scholar 

  • Hwang, W., & Eaton, J. K. (2004). Creating homogeneous and isotropic turbulence without a mean flow. Experiments in Fluids36, 444–454. http://doi.org/10.1007/s00348-003-0742-6.

  • Jain, A. K. (1989). Fundamentals of digital image processing. Prentice Hall.

    Google Scholar 

  • Jeong, J., & Hussain, F. (1995). On the identification of a vortex. Journal of Fluid Mechanics, 285, 69. http://doi.org/10.1017/S0022112095000462.

  • Jodai, Y., Westerweel, J., & Elsinga, G. E. (2014). Time-resolved Tomographic-PIV measurement in the near-wall region of a turbulent boundary layer. In 17th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 07–10 July.

    Google Scholar 

  • Kabsch, W. (1976). A solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A32, 922–923. http://doi.org/10.1107/S0567739476001873.

  • Katz, J., & Sheng, J. (2010). Applications of holography in fluid mechanics and particle dynamics. Annual Review of Fluid Mechanics42, 531–555. http://doi.org/10.1146/annurev-fluid-121108-145508.

  • Klein, S., Gibert, M., Bérut, A., & Bodenschatz, E. (2013). Simultaneous 3D measurement of the translation and rotation of finite-size particles and the flow field in a fully developed turbulent water flow. Measurement Science and Technology, 24, 024006. http://doi.org/10.1088/0957-0233/24/2/024006.

  • Koek, W. (2006). Holographic particle image velocimetry using bacteriorhodopsin. TU-Delft.

    Google Scholar 

  • Kolář, V. (2007). Vortex identification: New requirements and limitations. International Journal of Heat and Fluid Flow28, 638–652. http://doi.org/10.1016/j.ijheatfluidflow.2007.03.004.

  • Krishnan, G., & Leighton, D. (1995). Inertial lift on a moving sphere in contact with a plane wall in a shear flow. Physics of Fluids7, 2538. http://doi.org/10.1063/1.869264.

  • Kurose, R., & Komori, S. (1999). Drag and lift forces on a rotating sphere in a linear shear flow. Journal of Fluid Mechanics384, 183–206. http://doi.org/10.1017/S0022112099004164.

  • Langehanenberg, P., Kemper, B., Dirksen, D., & von Bally, G. (2008). Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. Applied Optics47, D176–D182. http://doi.org/10.1364/AO.47.00D176.

  • Lee, H., & Balachandar, S. (2010). Drag and lift forces on a spherical particle moving on a wall in a shear flow at finite Re. Journal of Fluid Mechanics, 657, 89–125. http://doi.org/10.1017/S0022112010001382.

  • Leith, E. N., & Upatnieks, J. (1962). Reconstructed wavefronts and communication theory. Journal of the Optical Society of America52(10), 1123. http://doi.org/10.1364/JOSA.52.001123.

  • Liu, X., & Katz, J. (2006). Instantaneous pressure and material acceleration measurements using a four-exposure PIV system. Experiments in Fluids, 41(2), 227–240. http://doi.org/10.1007/s00348-006-0152-7.

  • Lu, S. S., & Willmarth, W. W. (1973). Measurements of the structure of the Reynolds stress in a turbulent boundary layer. Journal of Fluid Mechanics, 60, 481. http://doi.org/10.1017/S0022112073000315.

  • Maas, H. G., Gruen, A., & Papantoniou, D. (1993). Particle tracking velocimetry in 3-dimensional flows. Particle tracking velocimetry in three-dimensional flows. Part 1. Photogrammetric determination of particle coordinates. Experiments in Fluids, 15(2), 133–146. http://doi.org/10.1007/BF00190953.

  • Marchioli, C., & Soldati, A. (2002). Mechanisms for particle transfer and segregation in a turbulent boundary layer. Journal of Fluid Mechanics, 468, 283–315.

    Google Scholar 

  • Milgram, J. H., & Li, W. (2002). Computational reconstruction of images from holograms. Applied Optics, 41(5), 853–864. http://doi.org/10.1364/AO.41.000853.

  • Murata, S., & Yasuda, N. (2000). Potential of digital holography in particle measurement. Optics and Laser Technology32, 567–574. http://doi.org/10.1016/S0030-3992(00)00088-8.

  • Nalpanis, P., Hunt, J. C. R., & Barrett, C. F. (1993). Saltating particles over flat beds. Journal of Fluid Mechanics, 251:661. http://doi.org/10.1017/S0022112093003568.

  • Nezu, I., & Azuma, R. (2004). Turbulence characteristics and interaction between particles and fluid in particle-laden open channel flows. Journal of Hydraulics Engineering, 988–1001.

    Google Scholar 

  • Nicholson, K. W. (1988). A review of particle resuspension. Atmospheric Environment, 22, 2639–2651.

    Google Scholar 

  • Olson, J. A. (2001). The motion of fibres in turbulent flow, stochastic simulation of isotropic homogeneous turbulence. International Journal of Multiphase Flow, 27, 2083–2103. http://doi.org/10.1016/S0301-9322(01)00050-7.

  • Pan, G., & Meng, H. (2003). Digital holography of particle fields: Reconstruction by use of complex amplitude. Applied Optics42, 827–833. http://doi.org/10.1364/AO.42.000827.

  • Phillips, M. (1980). A force balance model for particle entrainment into a fluid stream. Journal of Physics D: Applied Physics, 13, 221–233. http://doi.org/10.1088/0022-3727/13/2/019.

  • Rabencov, B., & van Hout, R. (2015). Voronoi analysis of beads suspended in a turbulent square channel flow. International Journal of Multiphase Flow, 68, 10–13. http://doi.org/10.1016/j.ijmultiphaseflow.2014.09.007.

  • Rabencov, B., Arca, J., & van Hout, R. (2014). Measurement of polystyrene beads suspended in a turbulent square channel flow: Spatial distributions of velocity and number density. International Journal of Multiphase Flow, 62, 110–122. http://doi.org/10.1016/j.ijmultiphaseflow.2014.02.004.

  • Raffel, M., Willert, C. E., Wereley, S. T., & Kompenhans, J. (2007). Particle image velocimetry. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Robinson, K. (1991). Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 23, 601–639.

    Google Scholar 

  • Rouson, D. W. I., & Eaton, J. K. (2001). On the preferential concentration of solid particles in turbulent channel flow. Journal of Fluid Mechanics, 428, 149–169. http://doi.org/10.1017/S0022112000002627.

  • Sabban, L., Jacobson, N.-L., & van Hout, R. (2012). Measurement of pollen clump release and breakup in the vicinity of ragweed (A. confertiflora) staminate flowers. Ecosphere, 3, 1–24. http://doi.org/10.1890/ES12-00054.1.

  • Sabban, L., & van Hout, R. (2011). Measurements of pollen grain dispersal in still air and stationary, near homogeneous, isotropic turbulence. Journal of Aerosol Science, 42, 867–882.

    Article  Google Scholar 

  • Scarano, F. (2013). Tomographic PIV: Principles and practice. Measurement Science and Technology, 24, 012001. http://doi.org/10.1088/0957-0233/24/1/012001.

  • Scarano, F., & Poelma, C. (2009). Three-dimensional vorticity patterns of cylinder wakes. Experiments in Fluids, 47, 69–83. http://doi.org/10.1007/s00348-009-0629-2.

  • Schnarrs, U., & Jueptner, W. (2005). Digital holography. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Sheng, J., Malkiel, E., & Katz, J. (2009). Buffer layer structures associated with extreme wall stress events in a smooth wall turbulent boundary layer. Journal of Fluid Mechanics, 633, 17–60.

    Google Scholar 

  • Shields, A. (1936). Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitteilungen der Preußischen Versuchsanstalt für Wasserbau und Schiffbau, Berlin

    Google Scholar 

  • Soldati, A. (2005). Particles turbulence interactions in boundary layers. Journal of Angewandte Mathematical Mechanics, 85, 683–699.

    Google Scholar 

  • Soldati, A., & Marchioli, C. (2009). Physics and modelling of turbulent particle deposition and entrainment: Review of a systematic study. International Journal of Multiphase Flow35, 827–839. http://doi.org/10.1016/j.ijmultiphaseflow.2009.02.016.

  • Sutherland, A. J. (1967). Proposed mechanism for sediment entrainment by turbulent flows. Journal of GeoPhysics Research, 72, 6183–6194.

    Google Scholar 

  • Takemura, F., & Magnaudet, J. (2003). The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number. Journal of Fluid Mechanics, 495, 235–253. http://doi.org/10.1017/S0022112003006232.

  • van Hout, R. (2011). Time-resolved PIV measurements of the interaction of polystyrene beads with near-wall-coherent structures in a turbulent channel flow. International Journal of Multiphase Flow37(4), 346–357. http://doi.org/10.1016/j.ijmultiphaseflow.2010.11.004.

  • van Hout, R. (2013). Spatially and temporally resolved measurements of bead resuspension and saltation in a turbulent water channel flow. Journal of Fluid Mechanics, 715, 389–423. http://doi.org/10.1017/jfm.2012.525.

  • van Hout, R., Sabban, L., & Cohen, A. (2013). The use of high-speed PIV and holographic cinematography in the study of fiber suspension flows. Acta Mechanica, 224, 2263–2280. http://doi.org/10.1007/s00707-013-0917-z.

  • Vikram, C. S. (1992). Particle field holography. Cambridge University Press.

    Google Scholar 

  • Westerweel, J., Elsinga, G. E., & Adrian, R. J. (2012). Particle image velocimetry for complex and turbulent flows. Annual Review of Fluid Mechanics, 45, 409–436. http://doi.org/10.1146/annurev-fluid-120710-101204.

  • White, B. R., & Schulz, J. C. (1977). Magnus effect in saltation. Journal of Fluid Mechanics, 81, 497. http://doi.org/10.1017/S0022112077002183.

  • White, S. J. (1970). Plane bed thresholds of fine grained sediments. Nature, 228, 152–153.

    Article  Google Scholar 

  • Wiberg, P. L., & Smith, J. D. (1985). A theoretical model for saltating grains in water. Journal of Geophysical Research, 90, 7341–7354.

    Article  Google Scholar 

  • Wieneke, B. (2008). Volume self-calibration for 3D particle image velocimetry. Experiments in Fluids, 45, 549–556. http://doi.org/10.1007/s00348-008-0521-5.

  • Willmarth, W. W., & Lu, S. S. (1972). Structure of the Reynolds stress near the wall. Journal of Fluid Mechanics, 55, 65. http://doi.org/10.1017/S002211207200165X.

  • Wu, Y., & Christensen, K. T. (2006). Population trends of spanwise vortices in wall turbulence. Journal of Fluid Mechanics568, 55. http://doi.org/10.1017/S002211200600259X.

  • Yang, W., Kostinski, A. B., & Shaw, R. A. (2005). holography of particle fields. Optics Letters, 30, 1303–1305.

    Article  Google Scholar 

  • Zeng, L., Balachandar, S., & Fischer, P. (2005). Wall-induced forces on a rigid sphere at finite Reynolds number. Journal of Fluid Mechanics, 536, 1–25. http://doi.org/10.1017/S0022112005004738.

  • Zeng, L., Najjar, F., Balachandar, S., & Fischer, P. (2009). Forces on a finite-sized particle located close to a wall in a linear shear flow. Physics of Fluids, 21, 1–18. http://doi.org/10.1063/1.3082232.

  • Zhou, J., Adrian, R. J., Balachandar, S., & Kendall, T. M. (1999). Mechanisms for generating coherent packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 387, 353–396. http://doi.org/10.1017/S002211209900467X.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René van Hout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

van Hout, R. (2017). Using Holography and Particle Image Velocimetry to Study Particle Deposition, Re-suspension and Agglomeration. In: Minier, JP., Pozorski, J. (eds) Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration. CISM International Centre for Mechanical Sciences, vol 571. Springer, Cham. https://doi.org/10.1007/978-3-319-41567-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41567-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41566-6

  • Online ISBN: 978-3-319-41567-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics