Aldana-Bobadilla, E., Alfaro-Prez, C.: Finding the optimal sample based on shannon entropy and genetic algorithms. In: Sidorov, G., Galicia-Haro, S.N. (eds.) MICAI 2015. LNCS, vol. 9413, pp. 353–363. Springer, Heidelberg (2015)
CrossRef
Google Scholar
Cox, K.A., Dante, H.M., Maher, R.J.: Product appearance inspection methods and apparatus employing low variance filter, 17 August 1993. US Patent 5,237,621
Google Scholar
Doane, D.P.: Aesthetic frequency classifications. Am. Stat. 30(4), 181–183 (1976)
MathSciNet
Google Scholar
Gowda, K.C., Krishna, G.: The condensed nearest neighbor rule using the concept of mutual nearest neighborhood. IEEE Trans. Inf. Theor. 25(4), 488–490 (1979)
CrossRef
Google Scholar
Hyndman, R.J.: The problem with sturges rule for constructing histograms. Monash University (1995)
Google Scholar
Hyndman, R.J., Fan, Y.: Sample quantiles in statistical packages. Am. Stat. 50(4), 361–365 (1996)
Google Scholar
Kalegele, K., Takahashi, H., Sveholm, J., Sasai, K., Kitagata, G., Kinoshita, T.: On-demand data numerosity reduction for learning artifacts. In: 2012 IEEE 26th International Conference on Advanced Information Networking and Applications (AINA), pp. 152–159. IEEE (2012)
Google Scholar
Lane, D.M.: Online statistics education: an interactive multimedia course of study (2015). http://onlinestatbook.com/2/graphing_distributions/histograms.html. Accessed 03 Dec 2015
Liu, H., Motoda, H.: Instance Selection and Construction for Data Mining, vol. 608. Springer, Heidelberg (2013)
Google Scholar
Reeves, C.R., Bush, D.R.: Using genetic algorithms for training data selection in RBF networks. In: Liu, H., Motoda, H. (eds.) Instance Selection and Construction for Data Mining, vol. 608, pp. 339–356. Springer, Heidelberg (2001)
CrossRef
Google Scholar
Shlens, J.: A tutorial on principal component analysis (2014). arXiv preprint arXiv:1404.1100
Skalak, D.B.: Prototype and feature selection by sampling and random mutation hill climbing algorithms. In: Proceedings of the Eleventh International Conference on Machine Learning, pp. 293–301 (1994)
Google Scholar
Randall Wilson, D., Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Mach. Learn. 38(3), 257–286 (2000)
CrossRef
MATH
Google Scholar
Lei, Y., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based filter solution. ICML 3, 856–863 (2003)
Google Scholar