Dependence of Contrast-Enhanced Lesion Detection in Contrast-Enhanced Digital Breast Tomosynthesis on Imaging Chain Design

  • David A. ScadutoEmail author
  • Yue-Houng Hu
  • Yihuan Lu
  • Hailiang Huang
  • Jingxuan Liu
  • Kim Rinaldi
  • Gene Gindi
  • Paul R. Fisher
  • Wei Zhao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9699)


Contrast-enhanced digital breast tomosynthesis (CEDBT) may improve contrast-enhanced lesion conspicuity and relative contrast quantification by improving three-dimensional visualization of lesion morphology, and reducing the integration of attenuation information along the axial direction. Improved visualization of patterns of contrast-enhancement and improved iodine quantification may help differentiate between malignant and benign enhancing lesions. The dependence of dual-energy contrast-enhanced lesion detectability on imaging chain design is investigated. Lesion detectability and relative iodine quantification is comparable for subtraction in either reconstruction or projection domains for both phantom and patient images. SART generally produces greater SDNR than FBP, and scatter correcting projections further improves SDNR.


Contrast-enhanced digital mammography Contrast-enhanced digital breast tomosynthesis Digital breast tomosynthesis X-ray imaging SDNR 



We gratefully acknowledge financial support from NIH (1 R01 CA148053 and 1 R01 EB002655), and Siemens Healthcare.


  1. 1.
    Chou, C.-P., Lewin, J.M., Chiang, C.-L., Hung, B.-H., Yang, T.-L., Huang, J.-S., Liao, J.-B., Pan, H.-B.: Clinical evaluation of contrast-enhanced digital mammography and contrast enhanced tomosynthesis – comparison to contrast-enhanced breast MRI. Eur. J. Radiol. 84(12), 2501–2508 (2015)CrossRefGoogle Scholar
  2. 2.
    Dromain, C., Thibault, F., Muller, S., Rimareix, F., Delaloge, S., Tardivon, A., Balleyguier, C.: Dual-energy contrast-enhanced digital mammography: initial clinical results. Eur. Radiol. 21, 565–574 (2011)CrossRefGoogle Scholar
  3. 3.
    Jochelson, M.S., Dershaw, D.D., Sung, J.S., Heerdt, A.S., Thornton, C., Moskowitz, C.S., Ferrara, J., Morris, E.A.: Bilateral contrast-enhanced dual-energy digital mammography: feasibility and comparison with conventional digital mammography and MR imaging in women with known breast carcinoma. Radiology 266, 743–751 (2013)CrossRefGoogle Scholar
  4. 4.
    Lobbes, M.B.I., Lalji, U., Houwers, J., Nijssen, E.C., Nelemans, P.J., Van Roozendaal, L., Smidt, M.L., Heuts, E., Wildberger, J.E.: Contrast-enhanced spectral mammography in patients referred from the breast cancer screening programme. Eur. Radiol. 24, 1668–1676 (2014)Google Scholar
  5. 5.
    Luczyńska, E., Heinze-Paluchowska, S., Dyczek, S., Blecharz, P., Rys, J., Reinfuss, M.: Contrast-enhanced spectral mammography: comparison with conventional mammography and histopathology in 152 women. Korean J. Radiol. 15, 689–696 (2014)CrossRefGoogle Scholar
  6. 6.
    Baltzer, P.A.T., Benndorf, M., Dietzel, M., Gajda, M., Runnebaum, I.B., Kaiser, W.A.: False-positive findings at contrast-enhanced breast MRI: a BI-RADS descriptor study. Am. J. Roentgenol. 194, 1658–1663 (2010)CrossRefGoogle Scholar
  7. 7.
    Förnvik, D., Zackrisson, S., Ljungberg, O., Svahn, T., Timberg, P., Tingberg, A., Andersson, I.: Breast tomosynthesis: accuracy of tumor measurement compared with digital mammography and ultrasonography. Acta Radiol. 51, 240–247 (2010)CrossRefGoogle Scholar
  8. 8.
    Petralia, G., Bonello, L., Priolo, F., Summers, P., Bellomi, M.: Breast MR with special focus on DW-MRI and DCE-MRI. Cancer Imaging 11, 76–90 (2011)CrossRefGoogle Scholar
  9. 9.
    Froeling, V., Diekmann, F., Renz, D.M., Fallenberg, E.M., Steffen, I.G., Diekmann, S., Lawaczeck, R., Schmitzberger, F.F.: Correlation of contrast agent kinetics between iodinated contrast-enhanced spectral tomosynthesis and gadolinium-enhanced MRI of breast lesions. Eur. Radiol. 23, 1528–1536 (2013)CrossRefGoogle Scholar
  10. 10.
    Hu, Y.-H., Scaduto, D.A., Zhao, W.: Optimization of clinical protocols for contrast enhanced breast imaging. In: Nishikawa, R.M. Whiting, B.R. (eds.) SPIE Medical Imaging, p. 86680G. International Society for Optics and Photonics, Orlando, FL (2013)Google Scholar
  11. 11.
    Lu, Y., Peng, B., Scaduto, D.A., Zhao, W., Gindi, G.: Application of the ordered-subsets transmission reconstruction algorithm to contrast-enhanced dual-energy digital breast tomosynthesis. In: Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference, IEEE NSS/MIC, Seattle, WA (2014)Google Scholar
  12. 12.
    Lu, Y., Peng, B., Lau, B.A., Hu, Y., Scaduto, D.A., Zhao, W., Gindi, G.: A scatter correction method for contrast-enhanced dual-energy digital breast tomosynthesis. Phys. Med. Biol. 60, 6323–6354 (2015)CrossRefGoogle Scholar
  13. 13.
    Hu, Y.-H., Zhao, W.: Experimental quantification of lesion detectability in contrast enhanced dual energy digital breast tomosynthesis, vol. 8313, pp. 83130A1–83130A10 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • David A. Scaduto
    • 1
    Email author
  • Yue-Houng Hu
    • 2
  • Yihuan Lu
    • 3
  • Hailiang Huang
    • 1
  • Jingxuan Liu
    • 4
  • Kim Rinaldi
    • 1
  • Gene Gindi
    • 1
  • Paul R. Fisher
    • 1
  • Wei Zhao
    • 1
  1. 1.Department of RadiologyStony Brook MedicineStony BrookUSA
  2. 2.Division of Medical Physics and Biophysics, Department of Radiation OncologyDana-Farber Cancer Institute and Harvard Medical SchoolBostonUSA
  3. 3.Departments of Radiology and Biomedical EngineeringYale UniversityNew HavenUSA
  4. 4.Department of PathologyStony Brook MedicineStony BrookUSA

Personalised recommendations