Dynamic Testing and Constitutive Modelling of NBR Rubbers

  • M. G. Antonelli
  • B. Lonzi
  • E. Mancini
  • M. Martarelli
  • M. Sasso
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

The present work describes the compression behaviour of NBR rubber. Experimental tests have been conducted both in dynamic conditions. The latter ones, performed by a polymeric Split Hopkinson Bar, range from 100 to 500 1/s of strain rate. The long lasting pressure wave generated by the adopted SHB permitted to obtain a relatively high strain level in all the tests, up to 0.7–1.0 logarithmic strain. The experimental stress-strain curves were used to fit hyperelastic-perfect viscoelastic constitutive models; in particular, the Ogden and Mooney-Rivlin models were used for the hyperelasticity, while the Prony series was used for the viscoelastic part.

The analyses permitted to evaluate the dependency of the storage and loss moduli of NBR as functions of frequency and strain amplitude.

Keywords

Split Hopkinson Bar Viscoelasticity Hyper-elasticity PET NBR rubber 

References

  1. 1.
    Hu, W., Huang, X., Zhang, F., Niu, W., Chen, Y.: Compressive responses of vulcanized rubber under quasi-static and high strain rate conditions. In: Proceedings of ICEM15, 15th International Conference on Experimental Mechanics, Porto, Portugal, 22–27 July (2012)Google Scholar
  2. 2.
    Gent, A.N.: Engineering with Rubber: How to Design Rubber Components, 2nd edn. Hanser, Munich (2001)Google Scholar
  3. 3.
    Hoo Fatt, M.S., Ouyang, X.: Integral-based constitutive equation for rubber at high strain rates. Int. J. Solids Struct. 44(20), 6491–6506 (2007)CrossRefMATHGoogle Scholar
  4. 4.
    Sasso, M., Chiappini, G., Rossi, M., Cortese, L., Mancini, E.: Visco-hyper-pseudo-elastic characterization of a fluoro-silicone rubber. Exp. Mech. 54(3), 315–328 (2014)CrossRefGoogle Scholar
  5. 5.
    Song, B., Chen, W.: One-dimensional dynamic compressive behavior of EPDM rubber. Trans. ASME J. Eng. Mater. Technol. 125, 294–301 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Song, B., Chen, W.: Split Hopkinson Kolsky Bar: Design, Testing and Applications. Springer, New York (2010)MATHGoogle Scholar
  7. 7.
    Wang, L., Labibes, K., Azari, Z., Pluvinage, G.: Generalization of split Hopkinson bar technique to use viscoelastic bars. Int. J. Impact Eng. 15(5), 669–686 (1994)CrossRefGoogle Scholar
  8. 8.
    Cronin, D., Salisbury, C., Horst, C.: High rate characterization of low impedance materials using a polymeric split hopkinson pressure bar. In: Proceedings of SEM Annual Conference, St. Louis (MO), USA (2006)Google Scholar
  9. 9.
    Lim, J., Hong, J., Chen, W.W., Weerasooriya, T.: Mechanical response of pig skin under dynamic tensile loading. Int. J. Impact Eng. 38(2–3), 130–135 (2011)CrossRefGoogle Scholar
  10. 10.
    Bao, Y., Tang, L., Liu, Y., Liu, Z., Jiang, Z., Fang, D.: Localized deformation in aluminium foam during middle speed Hopkinson bar impact tests. Mater. Sci. Eng. A 560, 734–743 (2013)CrossRefGoogle Scholar
  11. 11.
    Curry, R., Cloete, T., Govender, R.: Implementation of viscoelastic Hopkinson bars. In: EPJ Web of Conferences, vol. 26. EDP Sciences (2012)Google Scholar
  12. 12.
    Cheng, Z., Crandall, J., Pilkey, W.: Wave dispersion and attenuation in viscoelastic split Hopkinson pressure bar. Shock Vib. 5, 307–315 (1998)CrossRefGoogle Scholar
  13. 13.
    Butt, H., Xue, P.: Determination of the wave propagation coefficient of viscoelastic SHPB: significance for characterization of cellular materials. Int. J. Impact Eng. 74, 83–91 (2014)CrossRefGoogle Scholar
  14. 14.
    Schapery, R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9(4), 295–310 (1969)CrossRefGoogle Scholar
  15. 15.
    Sasso, M., Antonelli, M.G., Mancini, E., Radoni, M., Amodio, D.: Experimental and numerical analysis of pressure waves propagation in a viscoelastic Hopkinson Bar. In: Conference Proceedings of the Society for Experimental Mechanics Series, vol. 85, pp. 259–267 (2016)Google Scholar
  16. 16.
    Mancini, E., Sasso, M., Rossi, M., Chiappini, G., Newaz, G., Amodio, D.: Design of an innovative system for wave generation in direct tension-compression split Hopkinson Bar. J. Dyn. Behav. Mater. 1, 201–213 (2015)CrossRefGoogle Scholar
  17. 17.
    Sasso, M., Palmieri, G., Chiappini, G., Amodio, D.: Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. Polym. Test. 27, 995–1004 (2008)CrossRefGoogle Scholar
  18. 18.
    Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11(9), 582–592 (1940)CrossRefMATHGoogle Scholar
  19. 19.
    Treolar, L.R.G.: Strains in an inflated rubber sheet and the mechanism of bursting. Inst. Rubber Ind. Trans. 19, 201–212 (1944)Google Scholar
  20. 20.
    Rivlin, R.S.: Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. A 241(835), 379–397 (1948)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Simo, J.C.: On fully three-dimensional finite strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153–173 (1987)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2017

Authors and Affiliations

  • M. G. Antonelli
    • 1
  • B. Lonzi
    • 2
  • E. Mancini
    • 3
  • M. Martarelli
    • 3
  • M. Sasso
    • 2
  1. 1.DIIIE, Università degli Studi dell’AquilaL’AquilaItaly
  2. 2.DIISM, Università Politecnica delle MarcheAnconaItaly
  3. 3.Università degli Studi eCampusNovedrate (CO)Italy

Personalised recommendations