Advertisement

PSCV: A Runtime Verification Tool for Probabilistic SystemC Models

  • Van Chan NgoEmail author
  • Axel Legay
  • Vania Joloboff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9779)

Abstract

This paper describes PSCV, a runtime verification tool for a class of SystemC models which have inherent probabilistic characteristics. The properties of interest are expressed using bounded linear temporal logic. The various features of the tool including automatic monitor generation for producing execution traces of the model-under-verification, mechanism for automatically instrumenting the model, and the interaction with statistical model checker are presented.

References

  1. 1.
    Abarbanel, Y., Beer, I., Glushovsky, L., Keidar, S., Wolfsthal, Y.: Focs: automatic generation of simulation checkers from formal specifications. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 538–542. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexible, distributable statistical model checking library. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 160–164. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Ciesinski, F., Größer, M.: On probabilistic computation tree logic. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 147–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Gal, A., Schroder-Preikschat, W., Spinczyk, O.: AspectC++: language proposal and prototype implementation. In: OOPSLA (2001)Google Scholar
  6. 6.
    Grotker, T., Liao, S., Martin, G., Swan, S.: System Design with SystemC. Kluwer Academic Publishers, Berlin (2002)Google Scholar
  7. 7.
    Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Katoen, J., Hahn, E., Hermanns, H., Jansen, D., Zapreev, I.: The Ins and Outs of the probabilistic model checker MRMC. In: QEST (2009)Google Scholar
  10. 10.
    Kwiatkowska, M., Norman, G., Parker, D.: Controller dependability analysis by probabilistic model checking. Control Eng. Pract. 15, 1427–1434 (2007)CrossRefGoogle Scholar
  11. 11.
    Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8, 3–30 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Ngo, V.C., Legay, A., Quilbeuf, J.: Statistical model checking for SystemC models. In: HASE (2016)Google Scholar
  13. 13.
  14. 14.
    Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 266–280. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Tabakov, D., Vardi, M.: Monitoring temporal SystemC properties. In: Formal Methods and Models for Codesign (2010)Google Scholar
  16. 16.
    Younes, H.: Verification and planning for stochastic processes with asynchronous events. Ph.D. thesis, Carnegie Mellon (2005)Google Scholar
  17. 17.
    Younes, H., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical probabilistic model checking. Int. J. Softw. Tools Technol. Transfer 8, 216–228 (2006)CrossRefzbMATHGoogle Scholar
  18. 18.
    Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to Simulink/Stateflow verification. Formal Methods Syst. Des. 43, 338–367 (2013)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Inria Rennes - Bretagne AtlantiqueRennesFrance

Personalised recommendations