Automatic Reachability Analysis for Nonlinear Hybrid Models with C2E2

  • Chuchu Fan
  • Bolun Qi
  • Sayan Mitra
  • Mahesh Viswanathan
  • Parasara Sridhar Duggirala
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9779)

Abstract

C2E2 is a bounded reachability analysis tool for nonlinear dynamical systems and hybrid automaton models. Previously it required users to annotate each system of differential equations of the hybrid automaton with discrepancy functions, and since these annotations are difficult to get for general nonlinear differential equations, the tool had limited usability. This version of C2E2 is improved in several ways, the most prominent among which is the elimination of the need for user-provided discrepancy functions. It automatically computes piece-wise (or local) discrepancy functions around the reachable parts of the state space using symbolically computed Jacobian matrix and eigenvalue perturbation bounds. The special cases of linear and constant rate differential equations are handled with more efficient algorithm. In this paper, we discuss these and other new features that make the new C2E2 a usable tool for bounded reachability analysis of hybrid systems.

References

  1. 1.
  2. 2.
    Computer Assisted Proofs in Dynamic Groups (CAPD). http://capd.ii.uj.edu.pl/index.php
  3. 3.
    Althoff, M.: An introduction to cora 2015. In: ARCH (2015)Google Scholar
  4. 4.
    Asarin, E., Dang, T., Maler, O.: The \(\mathbf{d/dt}\) tool for verification of hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-Vincentelli, A.L.: Ariadne: a framework for reachability analysis of hybrid automata. In: MTNS. Citeseer (2006)Google Scholar
  6. 6.
    Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Deng, Y., Rajhans, A., Julius, A.A.: STRONG: a trajectory-based verification toolbox for hybrid systems. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 165–168. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Duggirala, P.S., Fan, C., Mitra, S., Viswanathan, M.: Meeting a powertrain verification challenge. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 536–543. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  10. 10.
    Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from executions. In: EMSOFT, p. 26. IEEE Press (2013)Google Scholar
  11. 11.
    Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82. Springer, Heidelberg (2015)Google Scholar
  12. 12.
    Fan, C., Duggirala, P.S., Mitra, S., Viswanathan, M.: Progress on powertrain verification challenge with C2E2. In: ARCH (2015)Google Scholar
  13. 13.
    Fan, C., Mitra, S.: Bounded verification with on-the-fly discrepancy computation. In: Finkbeiner, B., et al. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 1–8. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24953-7_32 CrossRefGoogle Scholar
  14. 14.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: a model checker for hybrid systems. In: Grumberg, O. (ed.) CAV, pp. 460–463. Springer, Heidelberg (1997)Google Scholar
  16. 16.
    Huang, Z., Fan, C., Mereacre, A., Mitra, S., Kwiatkowska, M.: Invariant verification of nonlinear hybrid automata networks of cardiac cells. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 373–390. Springer, Heidelberg (2014)Google Scholar
  17. 17.
    Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Benchmarks for model transformations and conformance checking. In: ARCH (2014)Google Scholar
  18. 18.
    Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control verification benchmark. In: HSCC, pp. 253–262. ACM (2014)Google Scholar
  19. 19.
    Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: \(\delta \)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015)Google Scholar
  20. 20.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools Technol. Transf. (STTT) 1(1), 134–152 (1997)CrossRefMATHGoogle Scholar
  21. 21.
    Nghiem, T., Sankaranarayanan, S., Fainekos, G., Ivancić, F., Gupta, A., Pappas, G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear hybrid systems. In: HSCC, pp. 211–220. ACM (2010)Google Scholar
  22. 22.
    Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control-Analysis, Design: Solution Manual Part i (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Chuchu Fan
    • 1
  • Bolun Qi
    • 1
  • Sayan Mitra
    • 1
  • Mahesh Viswanathan
    • 1
  • Parasara Sridhar Duggirala
    • 2
  1. 1.University of Illinois, Urbana-ChampaignUrbanaUSA
  2. 2.University of ConnecticutMansfieldUSA

Personalised recommendations