Counterexample Guided Abstraction Refinement for Stability Analysis

  • Pavithra PrabhakarEmail author
  • Miriam García Soto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9779)


In this paper, we present a counterexample guided abstraction refinement (Cegar) algorithm for stability analysis of polyhedral hybrid systems. Our results build upon a quantitative predicate abstraction and model-checking algorithm for stability analysis, which returns a counterexample indicating a potential reason for instability. The main contributions of this paper include the validation of the counterexample and refinement of the abstraction based on the analysis of the counterexample. The counterexample returned by the quantitative predicate abstraction analysis is a cycle such that the product of the weights on its edges is greater than 1. Validation involves checking if there exists an infinite diverging execution which follows the cycle infinitely many times. Unlike in the case of Cegar for safety, the validation problem is not a bounded model-checking problem. Using novel insights, we present a simple characterization for the existence of an infinite diverging execution in terms of the satisfaction of a first order logic formula which can be efficiently solved. Similarly, the refinement is more involved, since, there is a priori no bound on the number of predecessor computation steps that need to be performed to invalidate the abstract counterexample. We present strategies for refinement based on the insights from the validation step. We have implemented the validation and refinement algorithms and use the stability verification tool Averist in the back end for performing the abstraction and model-checking. We compare the Cegar algorithm with Averist and report experimental results demonstrating the benefits of counterexample guided refinement.



This work is partially supported by the Marie Curie Career Integration Grant no. 631622 and the NSF CAREER award no. 1552668 to Pavithra Prabhakar and by the research grant no. BES-2013-065076 from the Spanish Ministry of Economy and Competitiveness to Miriam García Soto.


  1. 1.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) Hybrid Systems. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dang, T., Ivančić, F.: Counter-example guided predicate abstraction of hybrid systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 208–223. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bogomolov, S., Frehse, G., Greitschus, M., Grosu, R., Pasareanu, C., Podelski, A., Strump, T.: Assume-guarantee abstraction refinement meets hybrid systems. In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 116–131. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Branicky, M.S.: Stability of hybrid systems: state of the art. In: Conference on Decision and Control, pp. 120–125 (1997)Google Scholar
  5. 5.
    Clarke, E.M., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Duggirala, P.S., Mitra, S.: Abstraction refinement for stability. In: International Conference on Cyber-Physical Systems, pp. 22–31 (2011)Google Scholar
  9. 9.
    Graf, S., Saidi, H.: Construction of abstact state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., Arechiga, N.: Simulation-guided lyapunov analysis for hybrid dynamical systems. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 133–142 (2014)Google Scholar
  11. 11.
    Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River (1996)Google Scholar
  12. 12.
    Kourjanski, M., Varaiya, P.: Stability of hybrid systems. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) Hybrid Systems III. LNCS, vol. 1066, pp. 413–423. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  13. 13.
    Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    Lin, H., Antsaklis, P.J.: Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans. Autom. Control 54(2), 308–322 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Möhlmann, E., Theel, O.E.: Stabhyli: a tool for automatic stability verification of non-linear hybrid systems. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 107–112 (2013)Google Scholar
  16. 16.
    Oehlerking, J., Burchardt, H., Theel, O.: Fully automated stability verification for piecewise affine systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 741–745. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Parrilo, P.A.: Structure semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology, Pasadena, CA, May 2000Google Scholar
  18. 18.
    Prabhakar, P., Duggirala, P.S., Mitra, S., Viswanathan, M.: Hybrid automata-based CEGAR for rectangular hybrid systems. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 48–67. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Prabhakar, P., Dullerud, G.E., Viswanathan, M.: Pre-orders for reasoning about stability. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 197–206 (2012)Google Scholar
  20. 20.
    Prabhakar, P., Soto, M.G.: Abstraction based model-checking of stability of hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 280–295. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Prabhakar, P., Soto, M.G.: An algorithmic approach to stability verification of polyhedral switched system. In: American Control Conference (2014)Google Scholar
  22. 22.
    Prabhakar, P., Soto, M.G.: AVERIST: an algorithmic verifier for stability. Electron. Notes Theor. Comput. Sci. 317, 133–139 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Prabhakar, P., Viswanathan, M.: On the decidability of stability of hybrid systems. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control (2013)Google Scholar
  24. 24.
    Yfoulis, C.A., Shorten, R.: A numerical technique for stability analysis of linear switched systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 631–645. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Kansas State UniversityManhattanUSA
  2. 2.IMDEA Software Institute and Universidad Politécnica de MadridMadridSpain

Personalised recommendations