Proving Parameterized Systems Safe by Generalizing Clausal Proofs of Small Instances

Conference paper

DOI: 10.1007/978-3-319-41528-4_16

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9779)
Cite this paper as:
Dooley M., Somenzi F. (2016) Proving Parameterized Systems Safe by Generalizing Clausal Proofs of Small Instances. In: Chaudhuri S., Farzan A. (eds) Computer Aided Verification. CAV 2016. Lecture Notes in Computer Science, vol 9779. Springer, Cham


We describe an approach to proving safety properties of parameterized reactive systems. Clausal inductive proofs for small instances are generalized to quantified formulae, which are then checked against the whole family of systems. Clausal proofs are generated at the bit-level by the IC3 algorithm. The clauses are partitioned into blocks, each of which is represented by a quantified implication formula, whose antecedent is a conjunction of modular linear arithmetic constraints.

Each quantified formula approximates the set of clauses it represents; good approximations are computed through a process of proof saturation, and through the computation of convex hulls. Candidate proofs are conjunctions of quantified lemmas. For systems with a small-model bound, the proof can often be shown valid for all values of the parameter. When the candidate proof cannot be shown valid, it can still be used to bootstrap finite proofs to permit verification at larger values of the parameter.

While the method is incomplete, it produces non-trivial invariants for a suite of benchmarks including hardware circuits and protocols.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Electrical, Computer and Energy EngineeringUniversity of Colorado BoulderBoulderUSA

Personalised recommendations