Advertisement

Precise and Complete Propagation Based Local Search for Satisfiability Modulo Theories

  • Aina NiemetzEmail author
  • Mathias Preiner
  • Armin Biere
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9779)

Abstract

Satisfiability Modulo Theories (SMT) is essential for many applications in computer-aided verification. A recent SMT solving approach based on stochastic local search for the theory of quantifier-free fixed-size bit-vectors proved to be quite effective on hard satisfiable instances, particularly in the context of symbolic execution. However, it still relies on brute-force randomization and restarts to achieve completeness. In this paper we simplify, extend, and formalize the propagation-based variant of this approach. We introduce a notion of essential inputs to lift the well-known concept of controlling inputs from the bit-level to the word-level, which allows to prune search. Guided by a formal completeness proof for our propagation-based variant we obtain a clean, simple and more precise algorithm, which yields a substantial gain in performance, as shown in our experimental evaluation.

References

  1. 1.
    Tillmann, N., Schulte, W.: Parameterized unit tests. In: Proceedings of ESEC/SIGSOFT FSE 2005, pp. 253–262. ACM (2005)Google Scholar
  2. 2.
    Yuan, J., Pixley, C., Aziz, A.: Constraint-Based Verification. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  3. 3.
    Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., Shurek, G.: Constraint-based random stimuli generation for hardware verification. AI Mag. 28(3), 13–30 (2007)Google Scholar
  4. 4.
    Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In: Proceedings of NDSS 2008. The Internet Society (2008)Google Scholar
  5. 5.
    Fröhlich, A., Biere, A., Wintersteiger, C.M., Hamadi, Y.: Stochastic local search for satisfiability modulo theories. In: Proceedings of AAAI 2015, pp. 1136–1143. AAAI Press (2015)Google Scholar
  6. 6.
    Niemetz, A., Preiner, M., Biere, A., Fröhlich, A.: Improving local search for bit-vector logics in SMT with path propagation. In: Proceedings of DIFTS 2015, pp. 1–10 (2015)Google Scholar
  7. 7.
    Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. JSAT 9, 53–58 (2015)Google Scholar
  8. 8.
    Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 737–744. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  13. 13.
    Ganesh, V.: Decision procedures for bit-vectors, arrays and integers. Ph.D. thesis, Stanford University (2007)Google Scholar
  14. 14.
    Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Bruttomesso, R.: RTL verification: from SAT to SMT(BV). Ph.D. thesis, University of Trento (2008)Google Scholar
  16. 16.
    Brummayer, R.: Efficient SMT solving for bit-vectors and the extensional theory of arrays. Ph.D. thesis, Johannes Kepler University Linz (2009)Google Scholar
  17. 17.
    Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Hanna, Z., Nadel, A., Palti, A., Sebastiani, R.: A lazy and layered SMT(BV) solver for hard industrial verification problems. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 547–560. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Franzen, A.: Efficient solving of the satisfiability modulo bit-vectors problem and some extensions to SMT. Ph.D. thesis, University of Trento (2010)Google Scholar
  19. 19.
    Hansen, T.A.: A constraint solver and its application to machine code test generation. Ph.D. thesis, University of Melbourne (2012)Google Scholar
  20. 20.
    Hadarean, L., Bansal, K., Jovanović, D., Barrett, C., Tinelli, C.: A tale of two solvers: eager and lazy approaches to bit-vectors. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 680–695. Springer, Heidelberg (2014)Google Scholar
  21. 21.
    Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT solver. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Balint, A., Belov, A., Järvisalo, M., Sinz, C.: Overview and analysis of the SAT challenge 2012 solver competition. Artif. Intell. 223(2015), 120–155 (2012)zbMATHGoogle Scholar
  23. 23.
    Balint, A., Schöning, U.: Choosing probability distributions for stochastic local search and the role of make versus break. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 16–29. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Balint, A., Belov, A., Heule, M.J.H., Järvisalo, M. (eds.): Proceedings of SAT Competition 2013. Volume B-2013-1 of Department of Computer Science Series of Publications B., University of Helsinki (2013)Google Scholar
  25. 25.
    Belov, A., Heule, M.J.H., Järvisalo, M. (eds.): Proceedings of SAT Competition 2014. Volume B-2014-2 of Department of Computer Science Series of Publications B., University of Helsinki (2014)Google Scholar
  26. 26.
    Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)zbMATHGoogle Scholar
  27. 27.
    Kunz, W., Stoffel, D.: Reasoning in Boolean Networks: Logic Synthesis and Verification Using Testing Techniques. Kluwer Academic Publishers, Norwell (1997)CrossRefzbMATHGoogle Scholar
  28. 28.
    Goel, P.: An implicit enumeration algorithm to generate tests for combinational logic circuits. IEEE Trans. Comput. 30(3), 215–222 (1981)CrossRefzbMATHGoogle Scholar
  29. 29.
    Huang, C., Cheng, K.: Assertion checking by combined word-level ATPG and modular arithmetic constraint-solving techniques. In: Proceedings of DAC 2000, pp. 118–123 (2000)Google Scholar
  30. 30.
    Iyer, M.A.: Race: a word-level atpg-based constraints solver system for smart random simulation. In: Proceedings of ITC 2003, pp. 299–308. IEEE Computer Society (2003)Google Scholar
  31. 31.
    Järvisalo, M., Junttila, T.A., Niemelä, I.: Unrestricted vs restricted cut in a tableau method for boolean circuits. Ann. Math. Artif. Intell. 44(4), 373–399 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Drechsler, R., Junttila, T.A., Niemelä, I.: Non-clausal SAT and ATPG. In: Handbook of Satisfiability, vol. 185. Frontiers in Artificial Intelligence and Applications, pp. 655–693. IOS Press (2009)Google Scholar
  33. 33.
    Belov, A., Järvisalo, M., Stachniak, Z.: Depth-driven circuit-level stochastic local search for SAT. In: IJCAI, IJCAI/AAAI, pp. 504–509 (2011)Google Scholar
  34. 34.
    Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust boolean reasoning for equivalence checking and functional property verification. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 21(12), 1377–1394 (2002)CrossRefGoogle Scholar
  35. 35.
    Hoos, H.H.: On the run-time behaviour of stochastic local search algorithms for SAT. In: Proceedings of AAAI/IAAI 1999, pp. 661–666. AAAI Press/The MIT Press (1999)Google Scholar
  36. 36.
    Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.5. Technical report, Department of Computer Science, The University of Iowa (2015). www.SMT-LIB.org
  37. 37.
    de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 1–12. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  38. 38.
    Jovanović, D., Barrett, C., de Moura, L.: The design and implementation of the model constructing satisfiability calculus. In: FMCAD, pp. 173–180. IEEE (2013)Google Scholar
  39. 39.
    Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proceedings of AAAI 1994, pp. 337–343. AAAI Press/The MIT Press (1994)Google Scholar
  40. 40.
    McAllester, D.A., Selman, B., Kautz, H.A.: Evidence for invariants in local search. In: Proceedings of AAAI/IAAI 1997, pp. 321–326. AAAI Press/The MIT Press (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Johannes Kepler UniversityLinzAustria

Personalised recommendations