Keywords
- GPCR sequence alignment
- Adhesion GPCR residue nomenclature
- Adhesion GPCR sequence-structure relationship
- Druggability adhesion GPCRs
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Fredriksson R, Lagerström MC, Höglund PJ, Schiöth HB (2002) Novel human G protein-coupled receptors with long N-terminals containing GPS domains and Ser/Thr-rich regions. FEBS Lett 531:407–414
Bjarnadóttir TK, Fredriksson R, Schiöth HB (2007) The adhesion GPCRs: a unique family of G protein-coupled receptors with important roles in both central and peripheral tissues. Cell Mol Life Sci 64:2104–2119. doi:10.1007/s00018-007-7067-1
Kolakowski LF (1994) GCRDb: a G-protein-coupled receptor database. Recept Channels 2:1–7
Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272. doi:10.1124/mol.63.6.1256
Isberg V, de Graaf C, Bortolato A, Cherezov V, Katritch V, Marshall FH et al (2015) Generic GPCR residue numbers – aligning topology maps while minding the gaps. Trends Pharmacol Sci 36:22–31. doi:10.1016/j.tips.2014.11.001
Hamann J, Aust G, Araç D, Engel FB, Formstone C, Fredriksson R et al (2015) International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol Rev 67:338–367. doi:10.1124/pr.114.009647
Krasnoperov VG, Bittner MA, Beavis R, Kuang Y, Salnikow KV, Chepurny OG et al (1997) α-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron 18:925–937. doi:10.1016/S0896-6273(00)80332-3
Lin H-H, Chang G-W, Davies JQ, Stacey M, Harris J, Gordon S (2004) Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J Biol Chem 279:31823–31832. doi:10.1074/jbc.M402974200
Araç D, Boucard AA, Bolliger MF, Nguyen J, Soltis SM, Südhof TC et al (2012) A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J 31:1364–1378. doi:10.1038/emboj.2012.26
Prömel S, Langenhan T, Araç D (2013) Matching structure with function: the GAIN domain of Adhesion-GPCR and PKD1-like proteins. Trends Pharmacol Sci 34:470–478. doi:10.1016/j.tips.2013.06.002
Siu FY, He M, de Graaf C, Han GW, Yang D, Zhang Z et al (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499:444–449. doi:10.1038/nature12393
Yang L, Yang D, de Graaf C, Moeller A, West GM, Dharmarajan V et al (2015) Conformational states of the full-length glucagon receptor. Nat Commun 6:7859. doi:10.1038/ncomms8859
Yang D, de Graaf C, Yang L, Song G, Dai A, Cai X, et al (2016) Structural determinants of binding the seven-transmembrane domain of the glucagon-like peptide-1 receptor. J Biol Chem 291:12991–13004. doi:10.1074/jbc.M116.721977
Langenhan T, Aust G, Hamann J (2013) Sticky signaling–adhesion class G protein-coupled receptors take the stage. Sci Signal 6:re3. doi: 10.1126/scisignal.2003825
Araç D, Sträter N, Seiradake E (2016) Understanding the structural basis of adhesion GPCR functions. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg
Lu YC, Nazarko OV, Sando R, Salzman GS, Südhof TC, Araç D (2015) Structural basis of latrophilin-FLRT-UNC5 interaction in cell adhesion. Structure. doi:10.1016/j.str.2015.06.024
Stacey M, Lin H-H, Gordon S, McKnight AJ (2000) LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem Sci 25:284–289. doi:10.1016/S0968-0004(00)01583-8
Stoveken HM, Hajduczok AG, Xu L, Tall GG (2015) Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1421785112
Liebscher I, Monk KR, Schöneberg T (2015) How to wake a giant. Oncotarget 6:23038–23039. doi: 10.18632/oncotarget.5112
Liebscher I, Schön J, Petersen SC, Fischer L, Auerbach N, Demberg LM et al (2014) A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep 9:2018–2026. doi:10.1016/j.celrep.2014.11.036
Paavola KJ, Sidik H, Zuchero JB, Eckart M, Talbot WS (2014) Type IV collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126. Sci Signal 7:ra76. doi:10.1126/scisignal.2005347
Bohnekamp J, Schöneberg T (2011) Cell adhesion receptor GPR133 couples to Gs protein. J Biol Chem 286:41912–41916. doi:10.1074/jbc.C111.265934
Gupte J, Swaminath G, Danao J, Tian H, Li Y, Wu X (2012) Signaling property study of adhesion G-protein-coupled receptors. FEBS Lett 586:1214–1219. doi:10.1016/j.febslet.2012.03.014
Stephenson JR, Paavola KJ, Schaefer SA, Kaur B, Van Meir EG, Hall RA (2013) Brain-specific angiogenesis inhibitor-1 signaling, regulation, and enrichment in the postsynaptic density. J Biol Chem 288:22248–22256. doi:10.1074/jbc.M113.489757
Paavola KJ, Stephenson JR, Ritter SL, Alter SP, Hall RA (2011) The N terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity. J Biol Chem 286:28914–28921. doi:10.1074/jbc.M111.247973
Southern C, Cook JM, Neetoo-Isseljee Z, Taylor DL, Kettleborough CA, Merritt A et al (2013) Screening β-arrestin recruitment for the identification of natural ligands for orphan G-protein-coupled receptors. J Biomol Screen 18:599–609. doi:10.1177/1087057113475480
Yang L, Yang L, Friedland S, Friedland S, Corson N, Corson N et al (2014) GPR56 inhibits melanoma growth by internalizing and degrading its ligand TG2. Cancer Res 74:1022–1031. doi:10.1158/0008-5472.CAN-13-1268
Wilde C, Fischer L, Lede V, Kirchberger J, Rothemund S, Schöneberg T et al (2015) The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB J. doi:10.1096/fj.15-276220
Demberg LM, Rothemund S, Schöneberg T, Liebscher I (2015) Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2. Biochem Biophys Res Commun 464:743–747. doi:10.1016/j.bbrc.2015.07.020
Liebscher I, Schöneberg T (2016) Tethered agonism: a common activation mechanism of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg
Hamoud N, Tran V, Croteau L-P, Kania A, Côté J-F (2014) G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates. Proc Natl Acad Sci U S A 111:3745–3750. doi:10.1073/pnas.1313886111
Duman JG, Tzeng CP, Tu Y-K, Munjal T, Schwechter B, Ho TS-Y et al (2013) The adhesion-GPCR BAI1 regulates synaptogenesis by controlling the recruitment of the Par3/Tiam1 polarity complex to synaptic sites. J Neurosci 33:6964–6978. doi:10.1523/JNEUROSCI.3978-12.2013
Li X, Roszko I, Sepich DS, Ni M, Hamm HE, Marlow FL et al (2013) Gpr125 modulates Dishevelled distribution and planar cell polarity signaling. Development 140:3028–3039. doi:10.1242/dev.094839
Nordström KJV, Lagerström MC, Waller LMJ, Fredriksson R, Schiöth HB (2009) The secretin GPCRs descended from the family of adhesion GPCRs. Mol Biol Evol 26:71–84. doi:10.1093/molbev/msn228
Bryant D, Moulton V (2004) Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265. doi:10.1093/molbev/msh018
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340
Wolf S, Grünewald S (2015) Sequence, structure and ligand binding evolution of rhodopsin-like G protein-coupled receptors: a crystal structure-based phylogenetic analysis. PLoS One 10, e0123533. doi:10.1371/journal.pone.0123533
Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267. doi:10.1093/molbev/msj030
Kuhner MK, Felsenstein J (1994) A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol Biol Evol 11:459–468
Jazayeri A, Doré AS, Lamb D, Krishnamurthy H, Southall SM, Baig AH et al (2016) Extra-helical binding site of a glucagon receptor antagonist. Nature. doi:10.1038/nature17414
Hollenstein K, Kean J, Bortolato A, Cheng RKY, Doré AS, Jazayeri A et al (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499:438–443. doi:10.1038/nature12357
Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194. doi:10.1038/nature11896
Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y et al (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344:58–64. doi:10.1126/science.1249489
Wang C, Wu H, Katritch V, Han GW, Huang X-P, Liu W et al (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497:338–343. doi:10.1038/nature12167
Hollenstein K, de Graaf C, Bortolato A, Wang M-W, Marshall FH, Stevens RC (2014) Insights into the structure of class B GPCRs. Trends Pharmacol Sci 35:12–22. doi:10.1016/j.tips.2013.11.001
Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745. doi: 10.1126/science.289.5480.739
Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V et al (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475:65–70. doi:10.1038/nature10236
Wu B, Chien EYT, Mol CD, Fenalti G, Liu W, Katritch V et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science. doi:10.1126/science.1194396
Coin I, Katritch V, Sun T, Xiang Z, Siu FY, Beyermann M, Stevens RC et al (2013) Genetically encoded chemical probes in cells reveal the binding path of urocortin-I to CRF Class B GPCR. Cell 155:1258–1269. doi:10.1016/j.cell.2013.11.008
Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366–428. doi:10.1016/S1043-9471(05)80049-7
Wootten D, Simms J, Miller LJ, Christopoulos A, Sexton PM (2013) Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc Natl Acad Sci 110:5211–5216. doi:10.1073/pnas.1221585110
Pin J-P, Galvez T, Prezeau L (2003) Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 98:325–354
de Graaf C, Foata N, Engkvist O, Rognan D (2008) Molecular modeling of the second extracellular loop of G-protein coupled receptors and its implication on structure-based virtual screening. Proteins 71:599–620. doi:10.1002/prot.21724
Isberg V, Mordalski S, Munk C, Rataj K, Harpsøe K, Hauser AS et al (2015) GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res. doi:10.1093/nar/gkv1178
Pawson AJ, Sharman JL, Benson HE, Faccenda E, Alexander SPH, Buneman OP et al (2014) The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Res 42:D1098–D1106. doi:10.1093/nar/gkt1143
Shi L, Liapakis G, Xu R, Guarnieri F, Ballesteros JA, Javitch JA (2002) Beta2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. J Biol Chem 277:40989–40996. doi:10.1074/jbc.M206801200
Tehan BG, Bortolato A, Blaney FE, Weir MP, Mason JS (2014) Unifying family A GPCR theories of activation. Pharmacol Ther 143:51–60. doi:10.1016/j.pharmthera.2014.02.004
Mirzadegan T, Benkö G, Filipek S, Palczewski K (2003) Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin. Biochemistry 42:2759–2767. doi:10.1021/bi027224
Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC (2014) Allosteric sodium in class A GPCR signaling. Trends Biochem Sci 39:233–244. doi:10.1016/j.tibs.2014.03.002
Hofmann KP, Scheerer P, Hildebrand PW, Choe H-W, Park JH, Heck M et al (2009) A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem Sci 34:540–552. doi:10.1016/j.tibs.2009.07.005
Doré AS, Okrasa K, Patel JC, Serrano-Vega M, Bennett K, Cooke RM et al (2014) Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511:557–562. doi:10.1038/nature13396
Rasmussen SGF, Devree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS et al (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–555. doi:10.1038/nature10361
Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe H-W et al (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502. doi:10.1038/nature07330
Choe H-W, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N et al (2011) Crystal structure of metarhodopsin II. Nature 471:651–655. doi:10.1038/nature09789
Fritze O, Filipek S, Kuksa V, Palczewski K, Hofmann KP, Ernst OP (2003) Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. Proc Natl Acad Sci U S A 100:2290–2295. doi:10.1073/pnas.0435715100
Prioleau C, Visiers I, Ebersole BJ, Weinstein H, Sealfon SC (2002) Conserved helix 7 tyrosine acts as a multistate conformational switch in the 5HT2C receptor. identification of a novel “locked-on” phenotype and double revertant mutations. J Biol Chem 277:36577–36584. doi:10.1074/jbc.M206223200
Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola V-P, Chien EYT et al (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16:897–905. doi:10.1016/j.str.2008.05.001
Chrencik JE, Roth CB, Terakado M, Kurata H, Omi R, Kihara Y et al (2015) Crystal structure of antagonist bound human lysophosphatidic acid receptor 1. Cell 161:1633–1643. doi:10.1016/j.cell.2015.06.002
Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G et al (2012) Crystal structure of a lipid G protein-coupled receptor. Science 335:851–855. doi:10.1126/science.1215904
Legrand F, Tomasevic N, Simakova O, Lee C-CR, Wang Z, Raffeld M, et al (2014) The eosinophil surface receptor epidermal growth factor-like module containing mucin-like hormone receptor 1 (EMR1): a novel therapeutic target for eosinophilic disorders. J Allergy Clin Immunol 133:1439–1447, 1447.e1–e8. doi:10.1016/j.jaci.2013.11.041
Veninga H, de Groot DM, McCloskey N, Owens BM, Dessing MC, Verbeek JS et al (2011) CD97 antibody depletes granulocytes in mice under conditions of acute inflammation via a Fc receptor-dependent mechanism. J Leukoc Biol 89:413–421. doi:10.1189/jlb.0510280
Perret J, Craenenbroeck M, Langer I, Vertongen P (2002) Mutational analysis of the glucagon receptor: similarities with the vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide (PACAP). Biochem J 362:389–394
Koth CM, Murray JM, Mukund S, Madjidi A, Minn A, Clarke HJ et al (2012) Molecular basis for negative regulation of the glucagon receptor. Proc Natl Acad Sci 109:14393–14398. doi:10.1073/pnas.1206734109
Unson CG, Wu C-R, Jiang Y, Yoo B, Cheung C, Sakmar TP et al (2002) Roles of specific extracellular domains of the glucagon receptor in ligand binding and signaling. Biochemistry 41:11795–11803. doi:10.1021/bi025711j
Hoare SRJ, Brown BT, Santos MA, Malany S, Betz SF, Grigoriadis DE (2006) Single amino acid residue determinants of non-peptide antagonist binding to the corticotropin-releasing factor1 (CRF1) receptor. Biochem Pharmacol 72:244–255. doi: 10.1016/j.bcp.2006.04.007
Donnelly D (2012) The structure and function of the glucagon‐like peptide‐1 receptor and its ligands. Br J Pharmacol 166:27–41. doi:10.1111/j.1476-5381.2011.01687.x
Wootten D, Savage EE, Willard FS, Bueno AB, Sloop KW, Christopoulos A et al (2013) Differential activation and modulation of the glucagon-like peptide-1 receptor by small molecule ligands. Mol Pharmacol 83:822–834. doi:10.1124/mol.112.084525
Coopman K, Wallis R, Robb G, Brown AJH, Wilkinson GF, Timms D et al (2011) Residues within the transmembrane domain of the glucagon-like peptide-1 receptor involved in ligand binding and receptor activation: modelling the ligand-bound receptor. Mol Endocrinol 25:1804–1818. doi:10.1210/me.2011-1160
Underwood CR, Garibay P, Knudsen LB, Hastrup S, Peters GH, Rudolph R et al (2010) Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor. J Biol Chem 285:723–730. doi:10.1074/jbc.M109.033829
Wootten D, Reynolds CA, Koole C, Smith KJ, Mobarec JC, Simms J et al (2016) A hydrogen-bonded polar network in the core of the glucagon-like peptide-1 receptor is a fulcrum for biased agonism: lessons from class B crystal structures. Mol Pharmacol 89:335–347. doi:10.1124/mol.115.101246
Yaqub T, Tikhonova IG, Lättig J, Magnan R, Laval M, Escrieut C et al (2010) Identification of determinants of glucose-dependent insulinotropic polypeptide receptor that interact with N-terminal biologically active region of the natural ligand. Mol Pharmacol 77:547–558. doi:10.1124/mol.109.060111
Tseng C-C, Lin L (1997) A point mutation in the glucose-dependent insulinotropic peptide receptor confers constitutive activity. Biochem Biophys Res Commun 232:96–100. doi:10.1006/bbrc.1997.6231
Di Paolo E, Petry H, Moguilevsky N, Bollen A, De Neef P, Waelbroeck M et al (1999) Mutations of aromatic residues in the first transmembrane helix impair signalling by the secretin receptor. Recept Channels 6:309–315
Di Paolo E, De Neef P, Moguilevsky N, Petry H, Bollen A, Waelbroeck M et al (1998) Contribution of the second transmembrane helix of the secretin receptor to the positioning of secretin. FEBS Lett 424:207–210. doi: 10.1016/S0014-5793(98)00175-6
Solano RM, Langer I, Perret J, Vertongen P, Juarranz MG, Robberecht P et al (2001) Two basic residues of the h-VPAC1 receptor second transmembrane helix are essential for ligand binding and signal transduction. J Biol Chem 276:1084–1088. doi:10.1074/jbc.M007696200
Ceraudo E, Hierso R, Tan Y-V, Murail S, Rouyer-Fessard C, Nicole P et al (2012) Spatial proximity between the VPAC1 receptor and the amino terminus of agonist and antagonist peptides reveals distinct sites of interaction. FASEB J 26:2060–2071. doi:10.1096/fj.11-196444
Gensure RC, Shimizu N, Tsang J, Gardella TJ (2013) Identification of a contact site for residue 19 of parathyroid hormone (PTH) and PTH-related protein analogs in transmembrane domain two of the type 1 PTH receptor. Mol Endocrinol 17:2647–2658. doi:10.1210/me.2003-0275
Gardella TJ, Jüppner H (2001) Molecular properties of the PTH/PTHrP receptor. Trends Endocrinol Metab 12:210–217. doi:10.1016/S1043-2760(01)00409-X
Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, Zhao C et al (2015) Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 347:1117–1122. doi:10.1126/science.1261064
Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556. doi:10.1146/annurev-pharmtox-032112-135923
Christopher JA, Aves SJ, Bennett KA, Doré AS, Errey JC, Jazayeri A et al (2015) Fragment and structure-based drug discovery for a C GPCR: discovery of the mGlu5 negative allosteric modulator HTL14242 (3-chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J Med Chem 58:6653–6664. doi:10.1021/acs.jmedchem.5b00892
Wang C, Wu H, Evron T, Vardy E, Han GW, Huang X-P et al (2014) Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nat Commun 5:4355. doi:10.1038/ncomms5355
Mason JS, Bortolato A, Congreve M, Marshall FH (2012) New insights from structural biology into the druggability of G protein-coupled receptors. Trends Pharmacol Sci 33:249–260. doi:10.1016/j.tips.2012.02.005
Acknowledgements
This work was supported by the Netherlands Organization for Scientific Research (NWO VENI grant 722.014.011 to SN), the Netherlands eScience Center (NLeSC)/NWO (Enabling Technologies project, 3D-e-Chem, grant 027.014.201 to CdG), the National Natural Science Foundation of China (NSFC, Research Fund for International Young Scientists, grant No. 31250110070 to SW) and the Canada Excellence Research Chair program (OPE). OPE holds the Anne and Max Tanenbaum Chair in Neuroscience at the University of Toronto. SN and CdG participate in the European Cooperation in Science and Technology Action CM1207 [GPCR-Ligand Interactions, Structures, and Transmembrane Signalling: A European Research Network (GLISTEN)] and the GPCR Consortium (gpcrconsortium.org).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this chapter
Cite this chapter
Nijmeijer, S., Wolf, S., Ernst, O.P., de Graaf, C. (2016). 7TM Domain Structure of Adhesion GPCRs. In: Langenhan, T., Schöneberg, T. (eds) Adhesion G Protein-coupled Receptors. Handbook of Experimental Pharmacology, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-41523-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-41523-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41521-5
Online ISBN: 978-3-319-41523-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)