Skip to main content

Classification, Nomenclature, and Structural Aspects of Adhesion GPCRs

Part of the Handbook of Experimental Pharmacology book series (HEP,volume 234)

Keywords

  • Adhesion GPCRs
  • Nomenclature
  • Classification
  • Pharmacology
  • Drug targets
  • Homologs
  • Mammals
  • Vertebrates
  • Model organisms
  • GAIN domain

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63(6):1256–1272. doi:10.1124/mol.63.6.1256

    CrossRef  CAS  PubMed  Google Scholar 

  2. Schioth HB, Fredriksson R (2005) The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen Comp Endocrinol 142(1–2):94–101. doi:10.1016/j.ygcen.2004.12.018

    CrossRef  PubMed  CAS  Google Scholar 

  3. Baud V, Chissoe SL, Viegas-Pequignot E, Diriong S, N’Guyen VC, Roe BA et al (1995) EMR1, an unusual member in the family of hormone receptors with seven transmembrane segments. Genomics 26(2):334–344

    CrossRef  CAS  PubMed  Google Scholar 

  4. Gray JX, Haino M, Roth MJ, Maguire JE, Jensen PN, Yarme A et al (1996) CD97 is a processed, seven-transmembrane, heterodimeric receptor associated with inflammation. J Immunol 157(12):5438–5447

    CAS  PubMed  Google Scholar 

  5. Hamann J, Eichler W, Hamann D, Kerstens HM, Poddighe PJ, Hoovers JM et al (1995) Expression cloning and chromosomal mapping of the leukocyte activation antigen CD97, a new seven-span transmembrane molecule of the secretion receptor superfamily with an unusual extracellular domain. J Immunol 155(4):1942–1950

    CAS  PubMed  Google Scholar 

  6. Kwakkenbos MJ, Kop EN, Stacey M, Matmati M, Gordon S, Lin HH et al (2004) The EGF-TM7 family: a postgenomic view. Immunogenetics 55(10):655–666. doi:10.1007/s00251-003-0625-2

    CrossRef  CAS  PubMed  Google Scholar 

  7. Zendman AJ, Cornelissen IM, Weidle UH, Ruiter DJ, van Muijen GN (1999) TM7XN1, a novel human EGF-TM7-like cDNA, detected with mRNA differential display using human melanoma cell lines with different metastatic potential. FEBS Lett 446(2–3):292–298

    CrossRef  CAS  PubMed  Google Scholar 

  8. Stacey M, Lin HH, Gordon S, McKnight AJ (2000) LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem Sci 25(6):284–289

    CrossRef  CAS  PubMed  Google Scholar 

  9. Harmar AJ (2001) Family-B G-protein-coupled receptors. Genome Biol 2(12):REVIEWS3013. PubMed PMID: 11790261; PubMed Central PMCID: PMCPMC138994

    Google Scholar 

  10. Fredriksson R, Gloriam DE, Hoglund PJ, Lagerstrom MC, Schioth HB (2003) There exist at least 30 human G-protein-coupled receptors with long Ser/Thr-rich N-termini. Biochem Biophys Res Commun 301(3):725–734

    CrossRef  CAS  PubMed  Google Scholar 

  11. Langenhan T, Aust G, Hamann J (2013) Sticky signaling–adhesion class G protein-coupled receptors take the stage. Sci Signal 6(276):re3. doi:10.1126/scisignal.2003825

    CrossRef  PubMed  CAS  Google Scholar 

  12. Arac D, Boucard AA, Bolliger MF, Nguyen J, Soltis SM, Sudhof TC et al (2012) A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J 31(6):1364–1378. doi:10.1038/emboj.2012.26, PubMed PMID: 22333914; PubMed Central PMCID: PMCPMC3321182

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7(4):339–357. doi:10.1038/nrd2518

    CrossRef  PubMed  CAS  Google Scholar 

  14. Poyner DR, Hay DL (2012) Secretin family (Class B) G protein-coupled receptors – from molecular to clinical perspectives. Br J Pharmacol 166(1):1–3. doi:10.1111/j.1476-5381.2011.01810.x, PubMed PMID: 22489621; PubMed Central PMCID: PMCPMC3415632

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hamann J, Aust G, Arac D, Engel FB, Formstone C, Fredriksson R et al (2015) International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol Rev 67(2):338–367. doi:10.1124/pr.114.009647, PubMed PMID: 25713288, PubMed Central PMCID: PMC4394687

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bjarnadottir TK, Fredriksson R, Hoglund PJ, Gloriam DE, Lagerstrom MC, Schioth HB (2004) The human and mouse repertoire of the adhesion family of G-protein-coupled receptors. Genomics 84(1):23–33. doi:10.1016/j.ygeno.2003.12.004

    CrossRef  CAS  PubMed  Google Scholar 

  17. Yang Z, Rannala B (2012) Molecular phylogenetics: principles and practice. Nat Rev Genet 13(5):303–314. doi:10.1038/nrg3186

    CrossRef  CAS  PubMed  Google Scholar 

  18. Gloriam DE, Fredriksson R, Schioth HB (2007) The G protein-coupled receptor subset of the rat genome. BMC Genomics 8:338. doi:10.1186/1471-2164-8-338, PubMed PMID: 17892602, PubMed Central PMCID: PMC2117022

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  19. Haitina T, Fredriksson R, Foord SM, Schioth HB, Gloriam DE (2009) The G protein-coupled receptor subset of the dog genome is more similar to that in humans than rodents. BMC Genomics 10:24. doi:10.1186/1471-2164-10-24, PubMed PMID: 19146662, PubMed Central PMCID: PMC2651185

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  20. Bjarnadottir TK, Gloriam DE, Hellstrand SH, Kristiansson H, Fredriksson R, Schioth HB (2006) Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88(3):263–273. doi:10.1016/j.ygeno.2006.04.001

    CrossRef  CAS  PubMed  Google Scholar 

  21. Haitina T, Olsson F, Stephansson O, Alsio J, Roman E, Ebendal T et al (2008) Expression profile of the entire family of Adhesion G protein-coupled receptors in mouse and rat. BMC Neurosci 9:43. doi:10.1186/1471-2202-9-43, PubMed PMID: 18445277, PubMed Central PMCID: PMC2386866

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lagerstrom MC, Hellstrom AR, Gloriam DE, Larsson TP, Schioth HB, Fredriksson R (2006) The G protein-coupled receptor subset of the chicken genome. PLoS Comput Biol 2(6), e54. doi:10.1371/journal.pcbi.0020054, PubMed PMID: 16741557, PubMed Central PMCID: PMC1472694

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  23. Metpally RP, Sowdhamini R (2005) Genome wide survey of G protein-coupled receptors in Tetraodon nigroviridis. BMC Evol Biol 5:41. doi:10.1186/1471-2148-5-41, PubMed PMID: 16022726, PubMed Central PMCID: PMC1187884

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  24. Harty BL, Krishnan A, Sanchez NE, Schioth HB, Monk KR (2015) Defining the gene repertoire and spatiotemporal expression profiles of adhesion G protein-coupled receptors in zebrafish. BMC Genomics 16:62. doi:10.1186/s12864-015-1296-8, PubMed PMID: 25715737, PubMed Central PMCID: PMC4335454

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kamesh N, Aradhyam GK, Manoj N (2008) The repertoire of G protein-coupled receptors in the sea squirt Ciona intestinalis. BMC Evol Biol 8:129. doi:10.1186/1471-2148-8-129, PubMed PMID: 18452600, PubMed Central PMCID: PMC2396169

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nordstrom KJ, Fredriksson R, Schioth HB (2008) The amphioxus (Branchiostoma floridae) genome contains a highly diversified set of G protein-coupled receptors. BMC Evol Biol 8:9. doi:10.1186/1471-2148-8-9, PubMed PMID: 18199322, PubMed Central PMCID: PMC2246102

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  27. Krishnan A, Almen MS, Fredriksson R, Schioth HB (2013) Remarkable similarities between the hemichordate (Saccoglossus kowalevskii) and vertebrate GPCR repertoire. Gene 526(2):122–133. doi:10.1016/j.gene.2013.05.005

    CrossRef  CAS  PubMed  Google Scholar 

  28. Raible F, Tessmar-Raible K, Arboleda E, Kaller T, Bork P, Arendt D et al (2006) Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev Biol 300(1):461–475. doi:10.1016/j.ydbio.2006.08.070

    CrossRef  CAS  PubMed  Google Scholar 

  29. Yona S, Lin HH, Siu WO, Gordon S, Stacey M (2008) Adhesion-GPCRs: emerging roles for novel receptors. Trends Biochem Sci 33(10):491–500. doi:10.1016/j.tibs.2008.07.005

    CrossRef  CAS  PubMed  Google Scholar 

  30. Nagarathnam B, Kalaimathy S, Balakrishnan V, Sowdhamini R (2012) Cross-genome clustering of human and C elegans G-protein coupled receptors. Evol Bioinform Online 8:229–259. doi:10.4137/EBO.S9405, PubMed PMID: 22807621, PubMed Central PMCID: PMC3396462

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Metpally RP, Sowdhamini R (2005) Cross genome phylogenetic analysis of human and Drosophila G protein-coupled receptors: application to functional annotation of orphan receptors. BMC Genomics 6:106. doi:10.1186/1471-2164-6-106, PubMed PMID: 16091152, PubMed Central PMCID: PMC1192796

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  32. Nordstrom KJ, Lagerstrom MC, Waller LM, Fredriksson R, Schioth HB (2009) The Secretin GPCRs descended from the family of Adhesion GPCRs. Mol Biol Evol 26(1):71–84. doi:10.1093/molbev/msn228

    CrossRef  PubMed  CAS  Google Scholar 

  33. Nordstrom KJ, Sallman Almen M, Edstam MM, Fredriksson R, Schioth HB (2011) Independent HHsearch, Needleman–Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families. Mol Biol Evol 28(9):2471–2480. doi:10.1093/molbev/msr061

    CrossRef  PubMed  CAS  Google Scholar 

  34. Krishnan A, Dnyansagar R, Almen MS, Williams MJ, Fredriksson R, Manoj N et al (2014) The GPCR repertoire in the demosponge Amphimedon queenslandica: insights into the GPCR system at the early divergence of animals. BMC Evol Biol 14:270. doi:10.1186/s12862-014-0270-4, PubMed PMID: 25528161, PubMed Central PMCID: PMC4302439

    CrossRef  PubMed  PubMed Central  Google Scholar 

  35. Krishnan A, Schioth HB (2015) The role of G protein-coupled receptors in the early evolution of neurotransmission and the nervous system. J Exp Biol 218(Pt 4):562–571. doi:10.1242/jeb.110312

    CrossRef  PubMed  Google Scholar 

  36. Bjarnadottir TK, Fredriksson R, Schioth HB (2007) The adhesion GPCRs: a unique family of G protein-coupled receptors with important roles in both central and peripheral tissues. Cell Mol Life Sci 64(16):2104–2119. doi:10.1007/s00018-007-7067-1

    CrossRef  CAS  PubMed  Google Scholar 

  37. Liebscher I, Schon J, Petersen SC, Fischer L, Auerbach N, Demberg LM et al (2014) A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep 9(6):2018–2026. doi:10.1016/j.celrep.2014.11.036, PubMed PMID: 25533341, PubMed Central PMCID: PMC4277498

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stoveken HM, Hajduczok AG, Xu L, Tall GG (2015) Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci U S A 112(19):6194–6199. doi:10.1073/pnas.1421785112, PubMed PMID: 25918380, PubMed Central PMCID: PMC4434738

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  39. Demberg LM, Rothemund S, Schoneberg T, Liebscher I (2015) Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2. Biochem Biophys Res Commun 464(3):743–747. doi:10.1016/j.bbrc.2015.07.020

    CrossRef  CAS  PubMed  Google Scholar 

  40. Wilde C, Fischer L, Lede V, Kirchberger J, Rothemund S, Schoneberg T et al (2016) The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB J 30(2):666–673. doi:10.1096/fj.15-276220

    CrossRef  CAS  PubMed  Google Scholar 

  41. Liebscher I, Schöneberg T (2016) Tethered agonism: a common activation mechanism of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  42. Araç D, Sträter N, Seiradake E (2016) Understanding the structural basis of adhesion GPCR functions. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  43. Lin HH, Stacey M, Yona S, Chang GW (2010) GPS proteolytic cleavage of adhesion-GPCRs. Adv Exp Med Biol 706:49–58, PMID: 21618825

    CrossRef  CAS  PubMed  Google Scholar 

  44. Promel S, Langenhan T, Arac D (2013) Matching structure with function: the GAIN domain of adhesion-GPCR and PKD1-like proteins. Trends Pharmacol Sci 34(8):470–478. doi:10.1016/j.tips.2013.06.002

    CrossRef  PubMed  CAS  Google Scholar 

  45. Promel S, Frickenhaus M, Hughes S, Mestek L, Staunton D, Woollard A et al (2012) The GPS motif is a molecular switch for bimodal activities of adhesion class G protein-coupled receptors. Cell Rep 2(2):321–331. doi:10.1016/j.celrep.2012.06.015, PubMed PMID: 22938866, PubMed Central PMCID: PMC3776922

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  46. Formstone CJ, Moxon C, Murdoch J, Little P, Mason I (2010) Basal enrichment within neuroepithelia suggests novel function(s) for Celsr1 protein. Mol Cell Neurosci 44(3):210–222. doi:10.1016/j.mcn.2010.03.008

    CrossRef  CAS  PubMed  Google Scholar 

  47. Nieberler M, Kittel RJ, Petrenko AG, Lin H-H, Langenhan T (2016) Control of adhesion GPCR function through proteolytic processing. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  48. Paavola KJ, Hall RA (2012) Adhesion G protein-coupled receptors: signaling, pharmacology, and mechanisms of activation. Mol Pharmacol 82(5):777–783. doi:10.1124/mol.112.080309, PubMed PMID: 22821233, PubMed Central PMCID: PMC3477231

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  49. Underwood CR, Garibay P, Knudsen LB, Hastrup S, Peters GH, Rudolph R et al (2010) Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor. J Biol Chem 285(1):723–730. doi:10.1074/jbc.M109.033829, PubMed PMID: 19861722, PubMed Central PMCID: PMC2804221

    CrossRef  CAS  PubMed  Google Scholar 

  50. Wouters MA, Rigoutsos I, Chu CK, Feng LL, Sparrow DB, Dunwoodie SL (2005) Evolution of distinct EGF domains with specific functions. Protein Sci 14(4):1091–1103. doi:10.1110/ps.041207005, PubMed PMID: 15772310, PubMed Central PMCID: PMC2253431

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  51. Krasnoperov VG, Bittner MA, Beavis R, Kuang Y, Salnikow KV, Chepurny OG et al (1997) alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron 18(6):925–937

    CrossRef  CAS  PubMed  Google Scholar 

  52. Lelianova VG, Davletov BA, Sterling A, Rahman MA, Grishin EV, Totty NF et al (1997) Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J Biol Chem 272(34):21504–21508

    CrossRef  CAS  PubMed  Google Scholar 

  53. Tomarev SI, Nakaya N (2009) Olfactomedin domain-containing proteins: possible mechanisms of action and functions in normal development and pathology. Mol Neurobiol 40(2):122–138. doi:10.1007/s12035-009-8076-x, PubMed PMID: 19554483, PubMed Central PMCID: PMC2936706

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  54. Matsushita H, Lelianova VG, Ushkaryov YA (1999) The latrophilin family: multiply spliced G protein-coupled receptors with differential tissue distribution. FEBS Lett 443(3):348–352

    CrossRef  CAS  PubMed  Google Scholar 

  55. Vakonakis I, Langenhan T, Promel S, Russ A, Campbell ID (2008) Solution structure and sugar-binding mechanism of mouse latrophilin-1 RBL: a 7TM receptor-attached lectin-like domain. Structure 16(6):944–953. doi:10.1016/j.str.2008.02.020, PubMed PMID: 18547526, PubMed Central PMCID: PMC2430599

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  56. Terada T, Watanabe Y, Tateno H, Naganuma T, Ogawa T, Muramoto K et al (2007) Structural characterization of a rhamnose-binding glycoprotein (lectin) from Spanish mackerel (Scomberomorous niphonius) eggs. Biochim Biophys Acta 1770(4):617–629. doi:10.1016/j.bbagen.2006.11.003

    CrossRef  CAS  PubMed  Google Scholar 

  57. Silva JP, Lelianova V, Hopkins C, Volynski KE, Ushkaryov Y (2009) Functional cross-interaction of the fragments produced by the cleavage of distinct adhesion G-protein-coupled receptors. J Biol Chem 284(10):6495–6506. doi:10.1074/jbc.M806979200, PubMed PMID: 19124473, PubMed Central PMCID: PMC2649109

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jackson VA, del Toro D, Carrasquero M, Roversi P, Harlos K, Klein R et al (2015) Structural basis of latrophilin-FLRT interaction. Structure 23(4):774–781. doi:10.1016/j.str.2015.01.013, PubMed PMID: 25728924, PubMed Central PMCID: PMC4396693

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  59. Silva JP, Ushkaryov YA (2010) The latrophilins, “split-personality” receptors. Adv Exp Med Biol 706:59–75, PubMed PMID: 21618826, PubMed Central PMCID: PMC3145135

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  60. Favara DM, Banham AH, Harris AL (2014) A review of ELTD1, a pro-angiogenic adhesion GPCR. Biochem Soc Trans 42(6):1658–1664. doi:10.1042/BST20140216

    CrossRef  CAS  PubMed  Google Scholar 

  61. Nechiporuk T, Urness LD, Keating MT (2001) ETL, a novel seven-transmembrane receptor that is developmentally regulated in the heart. ETL is a member of the secretin family and belongs to the epidermal growth factor-seven-transmembrane subfamily. J Biol Chem 276(6):4150–4157. doi:10.1074/jbc.M004814200

    CrossRef  CAS  PubMed  Google Scholar 

  62. Rohou A, Nield J, Ushkaryov YA (2007) Insecticidal toxins from black widow spider venom. Toxicon 49(4):531–549. doi:10.1016/j.toxicon.2006.11.021, PubMed PMID: 17210168, PubMed Central PMCID: PMC2517654

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  63. Krasnoperov V, Bittner MA, Holz RW, Chepurny O, Petrenko AG (1999) Structural requirements for alpha-latrotoxin binding and alpha-latrotoxin-stimulated secretion. A study with calcium-independent receptor of alpha-latrotoxin (CIRL) deletion mutants. J Biol Chem 274(6):3590–3596

    CrossRef  CAS  PubMed  Google Scholar 

  64. Silva JP, Lelianova VG, Ermolyuk YS, Vysokov N, Hitchen PG, Berninghausen O et al (2011) Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. Proc Natl Acad Sci U S A 108(29):12113–12118. doi:10.1073/pnas.1019434108, PubMed PMID: 21724987, PubMed Central PMCID: PMC3141932

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  65. O’Sullivan ML, de Wit J, Savas JN, Comoletti D, Otto-Hitt S, Yates JR 3rd et al (2012) FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron 73(5):903–910. doi:10.1016/j.neuron.2012.01.018, PubMed PMID: 22405201, PubMed Central PMCID: PMC3326387

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  66. Boucard AA, Maxeiner S, Sudhof TC (2014) Latrophilins function as heterophilic cell-adhesion molecules by binding to teneurins: regulation by alternative splicing. J Biol Chem 289(1):387–402. doi:10.1074/jbc.M113.504779, PubMed PMID: 24273166, PubMed Central PMCID: PMC3879561

    CrossRef  CAS  PubMed  Google Scholar 

  67. Woelfle R, D’Aquila AL, Pavlovic T, Husic M, Lovejoy DA (2015) Ancient interaction between the teneurin C-terminal associated peptides (TCAP) and latrophilin ligand-receptor coupling: a role in behavior. Front Neurosci 9:146. doi:10.3389/fnins.2015.00146, PubMed PMID: 25964737, PubMed Central PMCID: PMC4408839

    CrossRef  PubMed  PubMed Central  Google Scholar 

  68. Lu YC, Nazarko OV, Sando R III, Salzman GS, Sudhof TC, Arac D (2015) Structural basis of latrophilin-FLRT-UNC5 interaction in cell adhesion. Structure 23(9):1678–1691. doi:10.1016/j.str.2015.06.024

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ranaivoson FM, Liu Q, Martini F, Bergami F, von Daake S, Li S et al (2015) Structural and mechanistic insights into the latrophilin3-FLRT3 complex that mediates glutamatergic synapse development. Structure 23(9):1665–1677. doi:10.1016/j.str.2015.06.022

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  70. Petrenko AG, Surkova IN, Shamotienko OG, Kovalenko VA, Krasnoperov VN, Tret’iakov LA et al (1990) Study of the receptor for black widow spider neurotoxin. II. Isolation and characteristics of the receptor from bovine brain membranes. Bioorg Khim 16(2):158–165

    CAS  PubMed  Google Scholar 

  71. Geppert M, Khvotchev M, Krasnoperov V, Goda Y, Missler M, Hammer RE et al (1998) Neurexin I alpha is a major alpha-latrotoxin receptor that cooperates in alpha-latrotoxin action. J Biol Chem 273(3):1705–1710

    CrossRef  CAS  PubMed  Google Scholar 

  72. Hamann J, Kwakkenbos MJ, de Jong EC, Heus H, Olsen AS, van Lier RA (2003) Inactivation of the EGF-TM7 receptor EMR4 after the Pan-Homo divergence. Eur J Immunol 33(5):1365–1371. doi:10.1002/eji.200323881

    CrossRef  CAS  PubMed  Google Scholar 

  73. Kwakkenbos MJ, Matmati M, Madsen O, Pouwels W, Wang Y, Bontrop RE et al (2006) An unusual mode of concerted evolution of the EGF-TM7 receptor chimera EMR2. FASEB J 20(14):2582–2584. doi:10.1096/fj.06-6500fje

    CrossRef  CAS  PubMed  Google Scholar 

  74. Lin HH, Stacey M, Hamann J, Gordon S, McKnight AJ (2000) Human EMR2, a novel EGF-TM7 molecule on chromosome 19p13.1, is closely related to CD97. Genomics 67(2):188–200. doi:10.1006/geno.2000.6238

    CrossRef  CAS  PubMed  Google Scholar 

  75. Hamann J, Vogel B, van Schijndel GM, van Lier RA (1996) The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J Exp Med 184(3):1185–1189, PubMed PMID: 9064337, PubMed Central PMCID: PMC2192782

    CrossRef  CAS  PubMed  Google Scholar 

  76. Hamann J, Stortelers C, Kiss-Toth E, Vogel B, Eichler W, van Lier RA (1998) Characterization of the CD55 (DAF)-binding site on the seven-span transmembrane receptor CD97. Eur J Immunol 28(5):1701–1707. doi:10.1002/(SICI)1521-4141(199805)28:05<1701::AID-IMMU1701>3.0.CO;2-2

    CrossRef  CAS  PubMed  Google Scholar 

  77. Lin HH, Stacey M, Saxby C, Knott V, Chaudhry Y, Evans D et al (2001) Molecular analysis of the epidermal growth factor-like short consensus repeat domain-mediated protein-protein interactions: dissection of the CD97-CD55 complex. J Biol Chem 276(26):24160–24169. doi:10.1074/jbc.M101770200

    CrossRef  CAS  PubMed  Google Scholar 

  78. Stacey M, Chang GW, Davies JQ, Kwakkenbos MJ, Sanderson RD, Hamann J et al (2003) The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood 102(8):2916–2924. doi:10.1182/blood-2002-11-3540

    CrossRef  CAS  PubMed  Google Scholar 

  79. Wang T, Ward Y, Tian L, Lake R, Guedez L, Stetler-Stevenson WG et al (2005) CD97, an adhesion receptor on inflammatory cells, stimulates angiogenesis through binding integrin counter receptors on endothelial cells. Blood 105(7):2836–2844. doi:10.1182/blood-2004-07-2878

    CrossRef  CAS  PubMed  Google Scholar 

  80. Wandel E, Saalbach A, Sittig D, Gebhardt C, Aust G (2012) Thy-1 (CD90) is an interacting partner for CD97 on activated endothelial cells. J Immunol 188(3):1442–1450. doi:10.4049/jimmunol.1003944

    CrossRef  CAS  PubMed  Google Scholar 

  81. Kwakkenbos MJ, Pouwels W, Matmati M, Stacey M, Lin HH, Gordon S et al (2005) Expression of the largest CD97 and EMR2 isoforms on leukocytes facilitates a specific interaction with chondroitin sulfate on B cells. J Leukoc Biol 77(1):112–119. doi:10.1189/jlb.0704402

    CAS  PubMed  Google Scholar 

  82. Ward Y, Lake R, Yin JJ, Heger CD, Raffeld M, Goldsmith PK et al (2011) LPA receptor heterodimerizes with CD97 to amplify LPA-initiated RHO-dependent signaling and invasion in prostate cancer cells. Cancer Res 71(23):7301–7311. doi:10.1158/0008-5472.CAN-11-2381

    CrossRef  CAS  PubMed  Google Scholar 

  83. Ward Y, Lake R, Martin PL, Killian K, Salerno P, Wang T et al (2013) CD97 amplifies LPA receptor signaling and promotes thyroid cancer progression in a mouse model. Oncogene 32(22):2726–2738. doi:10.1038/onc.2012.301

    CrossRef  CAS  PubMed  Google Scholar 

  84. Veninga H, de Groot DM, McCloskey N, Owens BM, Dessing MC, Verbeek JS et al (2011) CD97 antibody depletes granulocytes in mice under conditions of acute inflammation via a Fc receptor-dependent mechanism. J Leukoc Biol 89(3):413–421. doi:10.1189/jlb.0510280

    CrossRef  CAS  PubMed  Google Scholar 

  85. Fredriksson R, Lagerstrom MC, Hoglund PJ, Schioth HB (2002) Novel human G protein-coupled receptors with long N-terminals containing GPS domains and Ser/Thr-rich regions. FEBS Lett 531(3):407–414

    CrossRef  CAS  PubMed  Google Scholar 

  86. Vallon M, Essler M (2006) Proteolytically processed soluble tumor endothelial marker (TEM) 5 mediates endothelial cell survival during angiogenesis by linking integrin alpha(v)beta3 to glycosaminoglycans. J Biol Chem 281(45):34179–34188. doi:10.1074/jbc.M605291200

    CrossRef  CAS  PubMed  Google Scholar 

  87. Enkhbayar P, Kamiya M, Osaki M, Matsumoto T, Matsushima N (2004) Structural principles of leucine-rich repeat (LRR) proteins. Proteins 54(3):394–403. doi:10.1002/prot.10605

    CrossRef  CAS  PubMed  Google Scholar 

  88. Vallon M, Aubele P, Janssen KP, Essler M (2012) Thrombin-induced shedding of tumour endothelial marker 5 and exposure of its RGD motif are regulated by cell-surface protein disulfide-isomerase. Biochem J 441(3):937–944. doi:10.1042/BJ20111682

    CrossRef  CAS  PubMed  Google Scholar 

  89. Wang XJ, Zhang DL, Xu ZG, Ma ML, Wang WB, Li LL et al (2014) Understanding cadherin EGF LAG seven-pass G-type receptors. J Neurochem 131(6):699–711. doi:10.1111/jnc.12955, PubMed PMID: 25280249, PubMed Central PMCID: PMC4261025

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shapiro L, Weis WI (2009) Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol 1(3):a003053. doi:10.1101/cshperspect.a003053, PubMed PMID: 20066110, PubMed Central PMCID: PMC2773639

    CrossRef  PubMed  PubMed Central  Google Scholar 

  91. Overduin M, Harvey TS, Bagby S, Tong KI, Yau P, Takeichi M et al (1995) Solution structure of the epithelial cadherin domain responsible for selective cell adhesion. Science 267(5196):386–389

    CrossRef  CAS  PubMed  Google Scholar 

  92. Overduin M, Tong KI, Kay CM, Ikura M (1996) 1H, 15N and 13C resonance assignments and monomeric structure of the amino-terminal extracellular domain of epithelial cadherin. J Biomol NMR 7(3):173–189

    CrossRef  CAS  PubMed  Google Scholar 

  93. Takeichi M (1995) Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 7(5):619–627

    CrossRef  CAS  PubMed  Google Scholar 

  94. Hohenester E, Tisi D, Talts JF, Timpl R (1999) The crystal structure of a laminin G-like module reveals the molecular basis of alpha-dystroglycan binding to laminins, perlecan, and agrin. Mol Cell 4(5):783–792

    CrossRef  CAS  PubMed  Google Scholar 

  95. Shima Y, Kawaguchi SY, Kosaka K, Nakayama M, Hoshino M, Nabeshima Y et al (2007) Opposing roles in neurite growth control by two seven-pass transmembrane cadherins. Nat Neurosci 10(8):963–969. doi:10.1038/nn1933

    CrossRef  CAS  PubMed  Google Scholar 

  96. Zhang Y, Sivasankar S, Nelson WJ, Chu S (2009) Resolving cadherin interactions and binding cooperativity at the single-molecule level. Proc Natl Acad Sci U S A 106(1):109–114. doi:10.1073/pnas.0811350106, PubMed PMID: 19114658, PubMed Central PMCID: PMC2629205

    CrossRef  CAS  PubMed  Google Scholar 

  97. Goodman AR, Cardozo T, Abagyan R, Altmeyer A, Wisniewski HG, Vilcek J (1996) Long pentraxins: an emerging group of proteins with diverse functions. Cytokine Growth Factor Rev 7(2):191–202

    CrossRef  CAS  PubMed  Google Scholar 

  98. Lum AM, Wang BB, Beck-Engeser GB, Li L, Channa N, Wabl M (2010) Orphan receptor GPR110, an oncogene overexpressed in lung and prostate cancer. BMC Cancer 10:40. doi:10.1186/1471-2407-10-40, PubMed PMID: 20149256, PubMed Central PMCID: PMC2830182

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  99. Bork P, Patthy L (1995) The SEA module: a new extracellular domain associated with O-glycosylation. Protein Sci 4(7):1421–1425. doi:10.1002/pro.5560040716, PubMed PMID: 7670383, PubMed Central PMCID: PMC2143162

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  100. LopezJimenez ND, Sainz E, Cavenagh MM, Cruz-Ithier MA, Blackwood CA, Battey JF et al (2005) Two novel genes, Gpr113, which encodes a family 2 G-protein-coupled receptor, and Trcg1, are selectively expressed in taste receptor cells. Genomics 85(4):472–482. doi:10.1016/j.ygeno.2004.12.005

    CrossRef  CAS  PubMed  Google Scholar 

  101. Abe J, Suzuki H, Notoya M, Yamamoto T, Hirose S (1999) Ig-hepta, a novel member of the G protein-coupled hepta-helical receptor (GPCR) family that has immunoglobulin-like repeats in a long N-terminal extracellular domain and defines a new subfamily of GPCRs. J Biol Chem 274(28):19957–19964

    CrossRef  CAS  PubMed  Google Scholar 

  102. Abe J, Fukuzawa T, Hirose S (2002) Cleavage of Ig-Hepta at a “SEA” module and at a conserved G protein-coupled receptor proteolytic site. J Biol Chem 277(26):23391–23398. doi:10.1074/jbc.M110877200

    CrossRef  CAS  PubMed  Google Scholar 

  103. Davies JQ, Chang GW, Yona S, Gordon S, Stacey M, Lin HH (2007) The role of receptor oligomerization in modulating the expression and function of leukocyte adhesion-G protein-coupled receptors. J Biol Chem 282(37):27343–27353. doi:10.1074/jbc.M704096200

    CrossRef  CAS  PubMed  Google Scholar 

  104. Fukuzawa T, Ishida J, Kato A, Ichinose T, Ariestanti DM, Takahashi T et al (2013) Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D. PLoS One 8(7), e69451. doi:10.1371/journal.pone.0069451, PubMed PMID: 23922714, PubMed Central PMCID: PMC3726689

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  105. Koh JT, Kook H, Kee HJ, Seo YW, Jeong BC, Lee JH et al (2004) Extracellular fragment of brain-specific angiogenesis inhibitor 1 suppresses endothelial cell proliferation by blocking alphavbeta5 integrin. Exp Cell Res 294(1):172–184. doi:10.1016/j.yexcr.2003.11.008

    CrossRef  CAS  PubMed  Google Scholar 

  106. Duman JG, Tu Y-K, Tolias KF (2016) Emerging roles of BAI adhesion-GPCRs in synapse development and plasticity. Neural Plast 2016:8301737. doi:10.1155/2016/8301737

    Google Scholar 

  107. Blanc G, Font B, Eichenberger D, Moreau C, Ricard-Blum S, Hulmes DJ et al (2007) Insights into how CUB domains can exert specific functions while sharing a common fold: conserved and specific features of the CUB1 domain contribute to the molecular basis of procollagen C-proteinase enhancer-1 activity. J Biol Chem 282(23):16924–16933. doi:10.1074/jbc.M701610200

    CrossRef  CAS  PubMed  Google Scholar 

  108. Tan K, Duquette M, Liu JH, Dong Y, Zhang R, Joachimiak A et al (2002) Crystal structure of the TSP-1 type 1 repeats: a novel layered fold and its biological implication. J Cell Biol 159(2):373–382. doi:10.1083/jcb.200206062, PubMed PMID: 12391027, PubMed Central PMCID: PMC2173040

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  109. Das S, Owen KA, Ly KT, Park D, Black SG, Wilson JM et al (2011) Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria. Proc Natl Acad Sci U S A 108(5):2136–2141. doi:10.1073/pnas.1014775108, PubMed PMID: 21245295, PubMed Central PMCID: PMC3033312

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kaur B, Brat DJ, Devi NS, Van Meir EG (2005) Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene 24(22):3632–3642. doi:10.1038/sj.onc.1208317

    CrossRef  CAS  PubMed  Google Scholar 

  111. Cork SM, Kaur B, Devi NS, Cooper L, Saltz JH, Sandberg EM et al (2012) A proprotein convertase/MMP-14 proteolytic cascade releases a novel 40 kDa vasculostatin from tumor suppressor BAI1. Oncogene 31(50):5144–5152. doi:10.1038/onc.2012.1, PubMed PMID: 22330140, PubMed Central PMCID: PMC3355202

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  112. Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z et al (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450(7168):430–434. doi:10.1038/nature06329

    CrossRef  CAS  PubMed  Google Scholar 

  113. Mazaheri F, Breus O, Durdu S, Haas P, Wittbrodt J, Gilmour D et al (2014) Distinct roles for BAI1 and TIM-4 in the engulfment of dying neurons by microglia. Nat Commun 5:4046. doi:10.1038/ncomms5046

    CrossRef  CAS  PubMed  Google Scholar 

  114. Okajima D, Kudo G, Yokota H (2010) Brain-specific angiogenesis inhibitor 2 (BAI2) may be activated by proteolytic processing. J Recept Signal Transduct Res 30(3):143–153. doi:10.3109/10799891003671139

    CrossRef  CAS  PubMed  Google Scholar 

  115. D’Souza SE, Ginsberg MH, Plow EF (1991) Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends Biochem Sci 16(7):246–250

    CrossRef  PubMed  Google Scholar 

  116. Klenotic PA, Huang P, Palomo J, Kaur B, Van Meir EG, Vogelbaum MA et al (2010) Histidine-rich glycoprotein modulates the anti-angiogenic effects of vasculostatin. Am J Pathol 176(4):2039–2050. doi:10.2353/ajpath.2010.090782, PubMed PMID: 20167858, PubMed Central PMCID: PMC2843491

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bolliger MF, Martinelli DC, Sudhof TC (2011) The cell-adhesion G protein-coupled receptor BAI3 is a high-affinity receptor for C1q-like proteins. Proc Natl Acad Sci U S A 108(6):2534–2539. doi:10.1073/pnas.1019577108, PubMed PMID: 21262840, PubMed Central PMCID: PMC3038708

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  118. Moriguchi T, Haraguchi K, Ueda N, Okada M, Furuya T, Akiyama T (2004) DREG, a developmentally regulated G protein-coupled receptor containing two conserved proteolytic cleavage sites. Genes Cells 9(6):549–560. doi:10.1111/j.1356-9597.2004.00743.x

    CrossRef  CAS  PubMed  Google Scholar 

  119. Wilde C, Fischer L, Lede V, Kirchberger J, Rothemund S, Schoneberg T et al (2015) The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB J. doi:10.1096/fj.15-276220

    PubMed Central  Google Scholar 

  120. Peeters MC, Fokkelman M, Boogaard B, Egerod KL, van de Water B, IJzerman AP et al (2015) The adhesion G protein-coupled receptor G2 (ADGRG2/GPR64) constitutively activates SRE and NFkappaB and is involved in cell adhesion and migration. Cell Signal 27(12):2579–2588. doi:10.1016/j.cellsig.2015.08.015

    CrossRef  CAS  PubMed  Google Scholar 

  121. Xu L, Begum S, Hearn JD, Hynes RO (2006) GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci U S A 103(24):9023–9028. doi:10.1073/pnas.0602681103, PubMed PMID: 16757564, PubMed Central PMCID: PMC1474142

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  122. Luo R, Jeong SJ, Jin Z, Strokes N, Li S, Piao X (2011) G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci U S A 108(31):12925–12930. doi:10.1073/pnas.1104821108, PubMed PMID: 21768377, PubMed Central PMCID: PMC3150909

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  123. Luo R, Jin Z, Deng Y, Strokes N, Piao X (2012) Disease-associated mutations prevent GPR56-collagen III interaction. PLoS One 7(1), e29818. doi:10.1371/journal.pone.0029818, PubMed PMID: 22238662, PubMed Central PMCID: PMC3251603

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yang L, Chen G, Mohanty S, Scott G, Fazal F, Rahman A et al (2011) GPR56 regulates VEGF production and angiogenesis during melanoma progression. Cancer Res 71(16):5558–5568. doi:10.1158/0008-5472.CAN-10-4543, PubMed PMID: 21724588, PubMed Central PMCID: PMC3156271

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gupte J, Swaminath G, Danao J, Tian H, Li Y, Wu X (2012) Signaling property study of adhesion G-protein-coupled receptors. FEBS Lett 586(8):1214–1219. doi:10.1016/j.febslet.2012.03.014

    CrossRef  CAS  PubMed  Google Scholar 

  126. Paavola KJ, Sidik H, Zuchero JB, Eckart M, Talbot WS (2014) Type IV collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126. Sci Signal 7(338):ra76. doi:10.1126/scisignal.2005347, PubMed PMID: 25118328; PubMed Central PMCID: PMC4159047

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  127. Petersen SC, Luo R, Liebscher I, Giera S, Jeong SJ, Mogha A et al (2015) The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211. Neuron 85(4):755–769. doi:10.1016/j.neuron.2014.12.057, PubMed PMID: 25695270, PubMed Central PMCID: PMC4335265

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  128. McMillan DR, White PC (2010) Studies on the very large G protein-coupled receptor: from initial discovery to determining its role in sensorineural deafness in higher animals. Adv Exp Med Biol 706:76–86

    CrossRef  CAS  PubMed  Google Scholar 

  129. Sun JP, Li R, Ren HZ, Xu AT, Yu X, Xu ZG (2013) The very large G protein coupled receptor (Vlgr1) in hair cells. J Mol Neurosci 50(1):204–214. doi:10.1007/s12031-012-9911-5

    CrossRef  CAS  PubMed  Google Scholar 

  130. Nikkila H, McMillan DR, Nunez BS, Pascoe L, Curnow KM, White PC (2000) Sequence similarities between a novel putative G protein-coupled receptor and Na+/Ca2+ exchangers define a cation binding domain. Mol Endocrinol 14(9):1351–1364. doi:10.1210/mend.14.9.0511

    CrossRef  CAS  PubMed  Google Scholar 

  131. McGee J, Goodyear RJ, McMillan DR, Stauffer EA, Holt JR, Locke KG et al (2006) The very large G-protein-coupled receptor VLGR1: a component of the ankle link complex required for the normal development of auditory hair bundles. J Neurosci 26(24):6543–6553. doi:10.1523/JNEUROSCI.0693-06.2006, PubMed PMID: 16775142, PubMed Central PMCID: PMC2682555

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The studies were supported by the Swedish Research Council and the Novo Nordisk Foundation (to A. K. and H. B. S.), the Netherlands Organization for Scientific Research (NWO VENI grant 722.014.011 to S. N.), and the Netherlands eScience Center (NLeSC)/NWO (Enabling Technologies project: 3D-e-Chem, grant 027.014.201 to C. d. G.). S. N. and C. d. G. participate in the European Cooperation in Science and Technology Action CM1207 [GPCR-Ligand Interactions, Structures, and Transmembrane Signalling: A European Research Network (GLISTEN)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helgi B. Schiöth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Krishnan, A., Nijmeijer, S., de Graaf, C., Schiöth, H.B. (2016). Classification, Nomenclature, and Structural Aspects of Adhesion GPCRs. In: Langenhan, T., Schöneberg, T. (eds) Adhesion G Protein-coupled Receptors. Handbook of Experimental Pharmacology, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-41523-9_2

Download citation