Skip to main content

Rigorous Global Optimization for Collision Risk Assessment on Perturbed Orbits

  • Chapter
  • First Online:
Book cover Space Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 114))

  • 1632 Accesses

Abstract

In this chapter, a method to assess the occurrence of impacts between objects (either spacecraft or space debris) orbiting around the Earth is presented. The method is based on the computation of the minimum distance between two evolving orbits by means of a rigorous global optimizer. Analytical solutions of artificial satellite motion are utilized to account for perturbative effects of Earth’s zonal harmonics, atmospheric drag, and third body. It is shown that the method can effectively compute the intersection between perturbed orbits and hence identify pairs of space objects on potentially colliding orbits. Test cases considering sun-synchronous, low perigee and earth-synchronous orbits are presented to assess the performances of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    http://www.space-track.org.

  2. 2.

    http://www.celestrack.org.

  3. 3.

    The computational time can indeed be reduced almost linearly performing parallel computation on many processors as COSY-GO has a fully parallel implementation.

References

  1. Aksnes, K.: On the use of Hill variables in artificial satellite theory: Brouwer’s theory. Astron. Astrophys. 17, 70–75 (1972)

    MATH  Google Scholar 

  2. Armellin, R., Di Lizia, P., Berz, M., Makino, K.: Computing the critical points of the distance function between two Keplerian orbits via rigorous global optimization. Celestial Mech. Dyn. Astron. 107, 377–395 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Astronomical Almanac for the Year 2007, United States Government Printing Office (2006)

    Google Scholar 

  4. Baluyev, R.V., Kholshevnikov, K.V.: Distance between two arbitrary unperturbed orbits. Celestial Mech. Dyn. Astron. 91, 287–300 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berz, M.: Modern Map Methods in Particle Beam Physics. Academic Press, San Diego (1999)

    Google Scholar 

  6. Berz, M., Makino, K.: COSY INFINITY Version 9 reference manual. MSU Report MSUHEP-060803, Michigan State University, East Lansing, MI 48824, pp. 1–84 (2006)

    Google Scholar 

  7. Berz, M., Bischof, C., Corliss, G., Griewank, A.: Computational Differentiation: Techniques, Applications, and Tools, pp. 1–419. SIAM, Philadelphia (1996)

    Google Scholar 

  8. Berz, M., Makino, K., Kim, Y.: Long-term stability of the tevatron by verified global optimisation. Nucl. Instrum. Methods A558, 1–10 (2005)

    Google Scholar 

  9. Dybczynski, P.A., Jopek, T.J., Serafin, R.A.: On the minimum distance between two Keplerian orbits with a common focus. Celestial Mech. Dyn. Astron. 38, 345–356 (1986)

    Article  MATH  Google Scholar 

  10. Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac (1961)

    Google Scholar 

  11. Fornberg, B.: Generation of finite difference formulas on arbitrarily spaced grids. Math. Comput. 51, 699–706 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Griewank, A., Corliss, G.F.: Automatic Differentiation of Algorithms, pp. 25–31. SIAM, Philadelphia (1991)

    Google Scholar 

  13. Gronchi, G.F.: On the stationary points of the squared distance between two ellipses with a common focus. SIAM J. Sci. Comput. 24, 61–80 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gronchi, G.F.: An algebraic method to compute the critical points of the distance function between two Keplerian orbits. Celestial Mech. Dyn. Astron. 93, 295–329 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoot, F.R.: Reformulation of the Brower geopotential theory for improved computational efficiency. Celestial Mech. 24, 367–375 (1981)

    Article  Google Scholar 

  16. Hoots, F.R.: An analytical satellite theory using gravity and a dynamic atmosphere. In: AIAA/AAS Astrodynamics Conference (1982)

    Book  MATH  Google Scholar 

  17. Hoots, F.R., Roehrich, R.L.: Models for Propagation of the NORAD Elements Sets, Project SPACETRACK, Rept. 3 (1980)

    Google Scholar 

  18. Hoots, F.R., France, R.G.: An analytical satellite theory using gravity and a dynamic atmosphere. Celestial Mech. 40, 1–18 (1987)

    Article  MATH  Google Scholar 

  19. Hoots F.R., Schumacher, P.W., Glover, R.A.: History of analytical orbit modeling in the U.S. space surveillance system. J. Guid. Control Dyn. 27, 174–185 (2004)

    Article  Google Scholar 

  20. Hujsak, R.S.: A restricted four body solution for resonating satellites with an oblate earth. In: American Institute of Aeronautics and Astronautics Conference (1979)

    Book  Google Scholar 

  21. Kearfott, R.B.: Rigorous Global Search: Continuous Problems, pp. 169–199. Kluwer Academic Publishers, Dordrecht (1996)

    Chapter  MATH  Google Scholar 

  22. Kholshevnikov, K.V., Vassiliev, N.N.: On the distance function between two Keplerian elliptic orbits. Celestial Mech. Dyn. Astron. 75, 75–83 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lowan, A.N., Davis, N., Levenson, A.: Table of the zeros of the Legendre Polynomials of order 1–16 and the weight coefficients for Gauss’ mechanical quadrature formula. Bull. Am. Math. Soc. 48, 739–743 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lyddane, R.H.: Small eccentricities or inclinations in the Brower theory of the artificial satellite. Astron. J. 68, 555–558 (1963)

    Article  MathSciNet  Google Scholar 

  25. Makino, K.: Rigorous Analysis of Nonlinear Motion in Particle Accelerators. Ph.D. Thesis, Michigan State University, East Lansing, MI, pp. 76–136 (1998)

    Google Scholar 

  26. Makino, K., Berz, M.: Efficient control of the dependency problem based on Taylor model methods. Reliab. Comput. 5, 3–12 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Makino, K., Berz, M.: Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math. 6, 239–316 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Makino, K., Berz, M.: Verified global optimization with Taylor model-based range bounders. Trans. Comput. 11, 1611–1618 (2005)

    Google Scholar 

  29. Morselli A.: The space debris problem: collision risk assessment for perturbed orbits via rigorous global optimization, M.Sc. Thesis, Politecnico di Milano, Milan (2011)

    Google Scholar 

  30. Sitarski, G.: Approaches of the parabolic comets to the outer planets. Acta Astronaut. 18, 171–19 (1968)

    Google Scholar 

  31. Vallado, D.A., Crawford, P., Hujsak, R., Kelso, T.S.: Revisiting SPACETRACK Report # 3: Rev. 1, AIAA/AAS Astrodynamics Specialist Conference and Exhibit (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Morselli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morselli, A., Armellin, R., Di Lizia, P., Bernelli-Zazzera, F. (2016). Rigorous Global Optimization for Collision Risk Assessment on Perturbed Orbits. In: Fasano, G., Pintér, J.D. (eds) Space Engineering. Springer Optimization and Its Applications, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-41508-6_9

Download citation

Publish with us

Policies and ethics