Skip to main content

Using Direct Transcription to Compute Optimal Low Thrust Transfers Between Libration Point Orbits

  • Chapter
  • First Online:
Space Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 114))

Abstract

The direct transcription method has been used to solve many challenging optimal control problems. One such example involves the calculation of a low thrust orbit transfer between libration point orbits. The recent implementation of high order discretization techniques is first described and then illustrated by computing optimal low thrust trajectories between orbits about the L 1 and L 2 Earth-Moon libration points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  2. Bauer, T.P., Betts, J.T., Hallman, W.P., Huffman, W.P., Zondervan, K.P.: Solving the optimal control problem using a nonlinear programming technique part 2: optimal shuttle ascent trajectories. In: Proceedings of the AIAA/AAS Astrodynamics Conference, AIAA-84-2038, Seattle, WA (1984)

    Google Scholar 

  3. Betts, J.T.: Practical Methods for Optimal Control and Estimation using Nonlinear Programming, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2010)

    Book  MATH  Google Scholar 

  4. Betts, J.T.: Optimal low-thrust orbit transfers with eclipsing. Optim. Control Appl. Methods 36, 218–240 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Betts, J.T., Bauer, T.P., Huffman, W.P., Zondervan, K.P.: Solving the optimal control problem using a nonlinear programming technique part 1: general formulation. In: Proceedings of the AIAA/AAS Astrodynamics Conference, AIAA-84-2037, Seattle, WA (1984)

    Google Scholar 

  6. Bryson, A.E. Jr., Ho, Y.-C.: Applied Optimal Control. Wiley, New York (1975)

    Google Scholar 

  7. Epenoy, R.: Optimal long-duration low-thrust transfers between libration point orbits. In: 63rd International Astronautical Congress, no. 4 in IAC-12-C1.5.9, Naples (2012)

    Google Scholar 

  8. Herman, A.L., Conway, B.A.: Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules. AIAA J. Guid. Control Dyn. 19, 592–599 (1996)

    Article  MATH  Google Scholar 

  9. Jay, L.O.: Lobatto methods. In: Engquist, B. (ed.) Encyclopedia of Applied and Computational Mathematics, Numerical Analysis of Ordinary Differential Equations. Springer - The Language of Science, Berlin (2013)

    Google Scholar 

  10. Rao, A.V., Mease, K.D.: Eigenvector approximate dichotomic basis method for solving hyper-sensitive optimal control problems. Optim. Control Appl. Methods 20, 59–77 (1999)

    Article  MathSciNet  Google Scholar 

  11. Zondervan, K.P., Bauer, T.P., Betts, J.T., Huffman, W.P.: Solving the optimal control problem using a nonlinear programming technique part 3: optimal shuttle reentry trajectories. In: Proceedings of the AIAA/AAS Astrodynamics Conference, AIAA-84-2039, Seattle, WA (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Betts .

Editor information

Editors and Affiliations

Appendix: Lobatto IIIA Method Coefficients

Appendix: Lobatto IIIA Method Coefficients

$$\displaystyle\begin{array}{rcl} S = 2& & {}\\ \begin{array}{c|cc} \rho _{1} & \alpha _{11} & \alpha _{12}\\ \rho _{ 2} & \alpha _{21} & \alpha _{22} \\\hline & \beta _{1} & \beta _{2}\end{array} \qquad = \qquad \begin{array}{c|cc} 0 & 0 & 0 \\ 1 &\frac{1} {2} & \frac{1} {2} \\\hline &\frac{1} {2} & \frac{1} {2} \end{array} & & {}\\ \end{array}$$
$$\displaystyle\begin{array}{rcl} S = 3& & {}\\ \begin{array}{c|ccc} \rho _{1} & \alpha _{11} & \alpha _{12} & \alpha _{13}\\ \rho _{ 2} & \alpha _{21} & \alpha _{22} & \alpha _{23}\\ \rho _{3}&\alpha _{31}&\alpha _{32}&\alpha _{33} \\\hline & \beta _{1} & \beta _{2} & \beta _{3}\end{array} \qquad = \qquad \begin{array}{c|ccc} 0 & 0 & 0 & 0 \\ \frac{1} {2} & \frac{5} {24} & \frac{1} {3} & - \frac{1} {24} \\ 1 & \frac{1} {6} & \frac{2} {3} & \frac{1} {6} \\\hline & \frac{1} {6} & \frac{2} {3} & \frac{1} {6} \end{array} & & {}\\ \end{array}$$
$$\displaystyle\begin{array}{rcl} S = 4& & {}\\ \begin{array}{c|cccc} \rho _{1} & \alpha _{11} & \alpha _{12} & \alpha _{13} & \alpha _{14}\\ \rho _{ 2} & \alpha _{21} & \alpha _{22} & \alpha _{23} & \alpha _{24}\\ \rho _{3}&\alpha _{31}&\alpha _{32}&\alpha _{33}&\alpha _{34} \\ \rho _{4} & \alpha _{41} & \alpha _{42} & \alpha _{43} & \alpha _{44} \\\hline & \beta _{1} & \beta _{2} & \beta _{3} & \beta _{4}\end{array} \qquad = \qquad \begin{array}{c|cccc} 0 & 0 & 0 & 0 & 0 \\ \frac{1} {2} -\frac{\sqrt{5}} {10} & \frac{11+\sqrt{5}} {120} & \frac{25-\sqrt{5}} {120} & \frac{25-13\sqrt{5}} {120} & \frac{-1+\sqrt{5}} {120} \\ \frac{1} {2} + \frac{\sqrt{5}} {10} & \frac{11-\sqrt{5}} {120} & \frac{25+13\sqrt{5}} {120} & \frac{25+\sqrt{5}} {120} & \frac{-1-\sqrt{5}} {120} \\ 1 & \frac{1} {12} & \frac{5} {12} & \frac{5} {12} & \frac{1} {12} \\\hline & \frac{1} {12} & \frac{5} {12} & \frac{5} {12} & \frac{1} {12} \end{array} & & {}\\ \end{array}$$
$$\displaystyle\begin{array}{rcl} S = 5& & {}\\ \begin{array}{c|ccccc} \rho _{1} & \alpha _{11} & \alpha _{12} & \alpha _{13} & \alpha _{14} & \alpha _{15}\\ \rho _{ 2} & \alpha _{21} & \alpha _{22} & \alpha _{23} & \alpha _{24} & \alpha _{25}\\ \rho _{3}&\alpha _{31}&\alpha _{32}&\alpha _{33}&\alpha _{34}&\alpha _{35} \\ \rho _{4} & \alpha _{41} & \alpha _{42} & \alpha _{43} & \alpha _{44} & \alpha _{45}\\ \rho _{ 5} & \alpha _{51} & \alpha _{52} & \alpha _{53} & \alpha _{54} & \alpha _{55} \\\hline & \beta _{1} & \beta _{2} & \beta _{3} & \beta _{4} & \beta _{5}\end{array} & & {}\\ \qquad = \qquad \begin{array}{c|ccccc} 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1} {2} -\frac{\sqrt{21}} {14} & \frac{119+3\sqrt{21}} {1960} & \frac{343-9\sqrt{21}} {2520} & \frac{392-96\sqrt{21}} {2205} & \frac{343-69\sqrt{21}} {2520} & \frac{-21+3\sqrt{21}} {1960} \\ \frac{1} {2} & \frac{13} {320} & \frac{392+105\sqrt{21}} {2880} & \frac{8} {45} & \frac{392-105\sqrt{21}} {2880} & \frac{3} {320} \\ \frac{1} {2} + \frac{\sqrt{21}} {14} & \frac{119-3\sqrt{21}} {1960} & \frac{343+69\sqrt{21}} {2520} & \frac{392+96\sqrt{21}} {2205} & \frac{343+9\sqrt{21}} {2520} & \frac{-21-3\sqrt{21}} {1960} \\ 1 & \frac{1} {20} & \frac{49} {180} & \frac{16} {45} & \frac{49} {180} & \frac{1} {20} \\\hline& \frac{1} {20} & \frac{49} {180} & \frac{16} {45} & \frac{49} {180} & \frac{1} {20} \end{array} & & {}\\ \end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Betts, J.T. (2016). Using Direct Transcription to Compute Optimal Low Thrust Transfers Between Libration Point Orbits. In: Fasano, G., Pintér, J.D. (eds) Space Engineering. Springer Optimization and Its Applications, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-41508-6_2

Download citation

Publish with us

Policies and ethics