Skip to main content

Domain Adaptive Classification for Compensating Variability in Histopathological Whole Slide Images

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9730))

Included in the following conference series:

Abstract

Histopathological whole slide images of the same organ stained with the same dye exhibit substantial inter-slide variation due to the manual preparation and staining process as well as due to inter-individual variability. In order to improve the generalization ability of a classification model on data from kidney pathology, we investigate a domain adaptation approach where a classifier trained on data from the source domain is presented a small number of user-labeled samples from the target domain. Domain adaptation resulted in improved classification performance, especially when combined with an interactive labeling procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fioretto, P., Mauer, M.: Histopathology of diabetic nephropathy. Semin. Nephrol. 27(2), 195–207 (2007)

    Article  Google Scholar 

  2. Macenko, M., Niethammer, M., Marron, J.S., Borland, D., Woosley, J.T., Guan,X., Schmitt, C., Thomas, N.E.: A method for normalizing histology slides for quantitative analysis. In: Proceedings of ISBI 2009, pp. 1107–1110 (2009)

    Google Scholar 

  3. Kato, T., Relator, R., Ngouv, H., Hirohashi, Y., Takaki, O., Kakimoto, T., Okada, K.: Segmental hog: new descriptor for glomerulus detection in kidneymicroscopy image. BMC Bioinform. 16(1), 316 (2015)

    Article  Google Scholar 

  4. Herve, N., Servais, A., Thervet, E., Olivo-Marin, J.C., Meas-Yedid, V.: Statistical color texture descriptors for histological images analysis. In: Proceedings of ISBI 2011, pp. 724–727 (2011)

    Google Scholar 

  5. Jhuo, I.H., Liu, D., Lee, D.T., Chang, S.F.: Robust visual domain adaptation with low-rank reconstruction. In: Proceedings of CVPR 2012

    Google Scholar 

  6. Persello, C.: Interactive domain adaptation for the classification of remote sensing images using active learning. IEEE Trans. Geosci. Remote Sens. 10(4), 736–740 (2013)

    Article  Google Scholar 

  7. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution Gray-Scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  8. Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.J.: Image classification with the fisher vector: theory and practice. Int. J. Comput. Vis. 105(3), 222–245 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, J.G., Li, J., Yau, W.Y., Sung, E.: Boosting dense SIFT descriptors and shape contexts of face images for gender recognition. In: Proceedings of CVPR 2010, pp. 96–102 (2010)

    Google Scholar 

  10. Boor, P., Bábíčková, J., Steegh, F.: Role of platelet-derived growth factor-cc in capillary rarefaction in renal fibrosis. Am. J. Pathol. 185(8), 2132–2142 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gadermayr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gadermayr, M., Strauch, M., Klinkhammer, B.M., Djudjaj, S., Boor, P., Merhof, D. (2016). Domain Adaptive Classification for Compensating Variability in Histopathological Whole Slide Images. In: Campilho, A., Karray, F. (eds) Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science(), vol 9730. Springer, Cham. https://doi.org/10.1007/978-3-319-41501-7_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41501-7_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41500-0

  • Online ISBN: 978-3-319-41501-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics