Skip to main content

Gender Recognition from Face Images Using a Fusion of SVM Classifiers

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9730))

Included in the following conference series:

Abstract

The recognition of gender from face images is an important application, especially in the fields of security, marketing and intelligent user interfaces. We propose an approach to gender recognition from faces by fusing the decisions of SVM classifiers. Each classifier is trained with different types of features, namely HOG (shape), LBP (texture) and raw pixel values. For the latter features we use an SVM with a linear kernel and for the two former ones we use SVMs with histogram intersection kernels. We come to a decision by fusing the three classifiers with a majority vote. We demonstrate the effectiveness of our approach on a new dataset that we extract from FERET. We achieve an accuracy of 92.6 %, which outperforms the commercial products Face++ and Luxand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marquardt Beauty Analysis. Face variations by sex (2014). http://www.beautyanalysis.com/beauty-and-you/face-variations/face-variations-sex/

  2. Perrett, D.I., Rolls, E.T., Caan, W.: Visual neurones responsive to faces in the monkey temporal cortex. Exp. Brain Res. 47(3), 329–342 (1982)

    Article  Google Scholar 

  3. Moghaddam, B., Yang, M.-H.: Learning gender with support faces. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 707–711 (2002)

    Article  Google Scholar 

  4. Alexandre, L.A.: Gender recognition: a multiscale decision fusion approach. Pattern Recognit. Lett. 31(11), 1422–1427 (2010)

    Article  Google Scholar 

  5. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3476–3483 (2013)

    Google Scholar 

  6. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  8. Brunelli, R., Poggio, T.: Face recognition: features versus templates. IEEE Trans. Pattern Anal. Mach. Intell. 10, 1042–1052 (1993)

    Article  Google Scholar 

  9. Baluja, S., Rowley, H.A.: Boosting sex identification performance. Int. J. Comput. Vis. 71(1), 111–119 (2007)

    Article  Google Scholar 

  10. Yang, J., Zhang, D., Frangi, A.F., Yang, J.-Y.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004)

    Article  Google Scholar 

  11. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  12. Lian, H.-C., Lu, B.-L.: Multi-view gender classification using local binary patterns and support vector machines. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 202–209. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Tapia, J.E., Perez, C.A.: Gender classification based on fusion of different spatial scale features selected by mutual information from histogram of LBP, intensity, shape. IEEE Trans. Inf. Forensics Secur. 8(3), 488–499 (2013)

    Article  Google Scholar 

  14. Milborrow, S., Nicolls, F.: Locating facial features with an extended active shape model. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 504–513. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  16. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  17. Mivia Lab University of Salerno. Gender-FERET dataset (2016). http://mivia.unisa.it/database/gender-feret.zip

  18. Karlsruhe Insitute of Technology. Befit - benchmarking facial image analysis technologies (2011). http://fipa.cs.kit.edu/412.php

  19. Face++. Leading face recognition on cloud (2014). http://www.faceplusplus.com/

  20. Luxand. Facial feature detection technologies (2015). https://www.luxand.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Greco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Azzopardi, G., Greco, A., Vento, M. (2016). Gender Recognition from Face Images Using a Fusion of SVM Classifiers. In: Campilho, A., Karray, F. (eds) Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science(), vol 9730. Springer, Cham. https://doi.org/10.1007/978-3-319-41501-7_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41501-7_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41500-0

  • Online ISBN: 978-3-319-41501-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics