Advertisement

Single Droplet Tracking in Jet Flow

  • Gokhan Alcan
  • Morteza Ghorbani
  • Ali Kosar
  • Mustafa Unel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9730)

Abstract

Fluid systems such as the multiphase flow and the jet flow usually involve droplets and/or bubbles whose morphological properties can provide important clues about the underlying phenomena. In this paper, we develop a new visual tracking method to track the evolution of single droplets in the jet flow. Shape and motion features of the detected droplets are fused and Bhattacharyya distance is employed to find the closest droplet among possible candidates in consecutive frames. Shapes of the droplets are not assumed to be circles or ellipses during segmentation process, which utilizes morphological operations and thresholding. The evolution of single droplets in the jet flow were monitored via Particle Shadow Sizing (PSS) technique where they were tracked with 86 % average accuracy and 15 fps real-time performance.

Keywords

Jet flow Droplet Bubble Morphology Segmentation Tracking Bhattacharyya distance 

Notes

Acknowledgments

This work was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) under Grant No 113S092. Equipment utilization support from Sabanci University Nanotechnology Research and Applications Center (SUNUM) is gratefully acknowledged.

References

  1. 1.
    Teh, S.Y., Lin, R., Hung, L.H., Lee, A.P.: Droplet microfluidics. Lab Chip 8(2), 198–220 (2008)CrossRefGoogle Scholar
  2. 2.
    Joensson, H.N., Uhlén, M., Svahn, H.A.: Droplet size based separation by deterministic lateral displacement separating droplets by cell-induced shrinking. Lab Chip 11(7), 1305–1310 (2011)CrossRefGoogle Scholar
  3. 3.
    Can, Z., Chen, F., Bao, N., He, H., Xu, P., Jana, S., Jung, S., Lian, H., Lu, C.: Droplet sorting based on the number of encapsulated particles using a solenoid valve. Lab Chip 13(1), 171–178 (2013)CrossRefGoogle Scholar
  4. 4.
    Alcan, G., Ghorbani, M., Kosar, A., Unel, M.: Vision based cone angle estimation of bubbly cavitating flow and analysis of scattered bubbles using micro imaging techniques. Industrial Electronics Society, IECON 2015-41st Annual Conference of the IEEE (2015)Google Scholar
  5. 5.
    Prasad, A.K.: Particle image velocimetry. Curr. Sci. Bangalore 79(1), 51–60 (2000)Google Scholar
  6. 6.
    Brossard, C., Monnier, J.C., Barricau, P., Vandernoot, F.X., Le Sant, Y., Champagnat, F., Le Besnerais, G.: Principles and applications of particle image velocimetry. AerospaceLab 1, 1–11 (2009)Google Scholar
  7. 7.
    Durst, F., Melling, A., Whitelaw, J.H.: Principles and practice of laser-Doppler anemometry. NASA STI/Recon Technical Report A 76, 47019 (1976)Google Scholar
  8. 8.
    Bachalo, W.D., Houser, M.J.: Phase/Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions. Opt. Eng. 23(5), 235583–235583 (1984)CrossRefGoogle Scholar
  9. 9.
    Estevadeordal, J., Goss, L.: PIV with LED: particle shadow velocimetry (PSV). In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, Meeting Papers, pp. 12355–12364 (2005)Google Scholar
  10. 10.
    Cheng, D.C., Burkhardt, H.: Bubble tracking in image sequences. Int. J. Therm. Sci. 42(7), 647–655 (2003)CrossRefGoogle Scholar
  11. 11.
    Okawa, T., Suzuki, Y., Kataoka, I., Aritomi, M., Mori, M.: Numerical implementation of interfacial drag force for one-dimensional, two-way bubble tracking method. J. Nucl. Sci. Technol. 37(4), 387–396 (2000)CrossRefGoogle Scholar
  12. 12.
    Jngst, C., Winterhalder, M.J., Zumbusch, A.: Fast and long term lipid droplet tracking with CARS microscopy. J. Biophotonics 4(6), 435–441 (2011)CrossRefGoogle Scholar
  13. 13.
    Basu, A.S.: Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters. Lab Chip 13(10), 1892–1901 (2013)CrossRefGoogle Scholar
  14. 14.
    Qian, X., Zhu, H., Yu, X., Chen, G.: Genetic algorithm based bubble matching and tracking in aerated water flows. Intell. Control Autom. 3, 2146–2148 (2004)Google Scholar
  15. 15.
    Xue, T., Qu, L., Wu, B.: Matching and 3-D reconstruction of multibubbles based on virtual stereo vision. IEEE Trans. Instrum. Measur. 63(6), 1639–1647 (2014)CrossRefGoogle Scholar
  16. 16.
    Kailath, T.: The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 15(1), 52–60 (1967)CrossRefGoogle Scholar
  17. 17.
    Gonzales, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using MATLAB. Pearson Prentice Hall, Upper Saddle River (2004)Google Scholar
  18. 18.
    Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 4, 532–550 (1987)CrossRefGoogle Scholar
  19. 19.
    Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11, 285–296 (1975)CrossRefGoogle Scholar
  20. 20.
    Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  21. 21.
    Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision. Addison-Wesley Longman Publishing Co., Boston (1991)Google Scholar
  22. 22.
    Wu, Q., Merchant, F., Castleman, K.: Microscope Image Processing. Academic press, Boston (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gokhan Alcan
    • 1
  • Morteza Ghorbani
    • 1
  • Ali Kosar
    • 1
  • Mustafa Unel
    • 1
  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey

Personalised recommendations