Extracting Lineage Information from Hand-Drawn Ancient Maps

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9730)


In this paper, we present an efficient segmentation technique that extracts piecewise linear patterns from hand-drawn maps. The user is only required to place the starting and end points and the method is capable of extracting the route that connects the two, which closely colocates with the hand-drawn map. It provides an effective approach to interactively process and understand those historical maps. The proposed method employs supervised learning to evaluate at every pixel location the probability that such a lineage pattern exists, followed by shortest path segmentation to extract the border of interest.


Efficient Segmentation Technique Hand-drawn Maps Semi-automatic Segmentation Method Marcher Lords Sampling Training Examples 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. IJCV 70(1), 109–131 (2006)CrossRefGoogle Scholar
  2. 2.
    Breiman, L.: Random forests. Mach. Learn. 5(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE T-PAMI 24(5), 603–619 (2002)CrossRefGoogle Scholar
  4. 4.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. CVPR. 1, 886–893 (2005)Google Scholar
  5. 5.
    Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Essa, E., Xie, X., Sazonov, I., Nithiarasu, P., Smith, D.: Shape prior model for media-adventitia border segmentation in IVUS using graph cut. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds.) MCV 2012. LNCS, vol. 7766, pp. 114–123. Springer, Heidelberg (2013)Google Scholar
  7. 7.
    Falcão, A.X., et al.: User-steered image segmentation paradigms: live wire and live lane. Graph. Models Image Process. 60(4), 233–260 (1998)CrossRefGoogle Scholar
  8. 8.
    Jones, J.-L., Essa, E., Xie, X., Smith, D.: Interactive segmentation of media-adventitia border in IVUS. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part II. LNCS, vol. 8048, pp. 466–474. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Jones, J.L., Xie, X., Essa, E.: Combining region-based and imprecise boundary-based cues for interactive medical image segmentation. IJNMBE 30(12), 1649–1666 (2014)Google Scholar
  10. 10.
    Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. IJCV 43(1), 7–27 (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    Mortensen, E.N., Barrett, W.A.: Interactive segmentation with intelligent scissors. Graph. Models Image Process. 60(5), 349–384 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Rotem, O., Greenspan, H., Goldberger, J.: Combining region and edge cues for image segmentation in a probabilistic gaussian mixture framework. In: CVPR, pp. 1–8 (2007)Google Scholar
  13. 13.
    Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z.: Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: CVPR, pp. 3982–3991 (2015)Google Scholar
  14. 14.
    Xie, X., Mirmehdi, M.: Texture exemplars for defect detection on random textures. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3687, pp. 404–413. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Xie, X., Mirmehdi, M.: Magnetostatic field for the active contour model: a study in convergence. In: BMVC, pp. 127–136 (2006)Google Scholar
  16. 16.
    Xie, X., Mirmehdi, M.: TEXEMS: random texture representation and analysis. In: Handbook of Texture Analysis, Chapter 4 (2008)Google Scholar
  17. 17.
    Yeo, S., Xie, X., Sazonov, I., Mirmehdi, M.: Geometric potential force for the deformable model. In: BMVC (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceMansoura UniversityMansouraEgypt
  2. 2.Department of Computer ScienceSwansea UniversitySwanseaUK
  3. 3.Department of History and ClassicsSwansea UniversitySwanseaUK

Personalised recommendations