Skip to main content

Microstructure and Mechanics of Human Aortas in Health and Disease

  • Chapter
  • First Online:
Biomechanics: Trends in Modeling and Simulation

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 20))

  • 2377 Accesses

Abstract

Human aortas are three-layered fibrous composites assembled by a ground matrix and embedded families of dispersed collagen fibers. The microstructural arrangement of the collagen fibers alters due to diseases such as aneurysms. We review a general dispersion model that is required to describe the mechanical response of a variety of collagenous tissues such as aortic walls considering three structural and three material parameters. The dispersion model is used to capture the remarkable differences in the microstructure and mechanics of healthy and aneurysmatic aortas. Related modeling/simulation of an aortic dissection is provided using the recently developed phase-field approach. An energy-based anisotropic failure criterion is used to numerically simulate the evolution of the crack phase-field in a simple shear test. Model parameters are provided and numerical results agree favorably with the experimental findings. Finally, an aortic clamping simulation is described by considering the individual aortic layers, residual stresses, nonsymmetric blood pressure after clamping, patient-specific data and damage-induced inelastic phenomena, i.e., stress softening and permanent deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaqus 6.13-4, Analysis user’s guide. Dassault Systèmes Simulia Corp. (2013)

    Google Scholar 

  • Attia, R.R., Murphy, J.D., Snider, M., Lappas, D.G., Darling, R.C., Lowenstein, E.: Myocardial ischemia due to infrarenal aortic cross-clamping during aortic surgery in patients with severe coronary artery disease. Circulation 53, 961–965 (1976)

    Article  Google Scholar 

  • Balzani, D., Brinkhues, S., Holzapfel, G.A.: Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls. Comput. Meth. Appl. Mech. Eng. 213–216, 139–151 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Criado, F.J.: Aortic dissection: a 250-year perspective. Tex. Heart Inst. J. 38, 694–700 (2011)

    Google Scholar 

  • Davies, R.R., Goldstein, L.J., Coady, M.A., Tittle, S.L., Rizzo, J.A., Kopf, G.S., Elefteriades, J.A.: Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann. Thorac Surg. 73, 17–27 (2002)

    Article  Google Scholar 

  • Dorfmann, A., Ogden, R.W.: A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int. J. Solids Struct. 41, 1855–1878 (2004)

    Article  MATH  Google Scholar 

  • FEAP - A finite element analysis program, Version 8.2 user manual. University of California at Berkeley, Berkeley, California (2008)

    Google Scholar 

  • Fereidoonnezhad, B., Naghdabadi, R., Holzapfel, G.A.: Stress softening and permanent deformation in human aortas: continuum and computational modeling with application to arterial clamping. J. Mech. Behav. Biomed. Mater. 61, 600–616 (2016)

    Google Scholar 

  • Fleming, C., Whitlock, E.P., Beil, T.L., Lederle, F.A.: Screening for abdominal aortic aneurysm: a best-evidence systematic review for the U.S. preventive services task force. Ann. Intern. Med. 142, 203–211 (2005)

    Article  Google Scholar 

  • Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)

    Article  Google Scholar 

  • Gültekin, O.: A phase field approach to the fracture of anisotropic medium. Master’s thesis, University of Stuttgart, Institute of Applied Mechanics (CE), Pfaffenwaldring 7, Stuttgart (2014)

    Google Scholar 

  • Gültekin, O., Dal, H., Holzapfel, G.A.: A phase-field approach to model fracture of arterial walls: theory and finite element analysis. Comput. Meth. Appl. Mech. Eng. (2016) (in press)

    Google Scholar 

  • Haslach Jr., H.W., Leahy, L.N., Fathi, P., Barrett, J.M., Heyes, A.E., Dumsha, T.A., McMahon, E.L.: Crack propagation and its shear mechanisms in the bovine descending aorta. Cardiovasc. Eng. Technol. 6, 501–518 (2015)

    Article  Google Scholar 

  • Holzapfel, G.A.: Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Wiley, Chichester (2000)

    MATH  Google Scholar 

  • Holzapfel, G.A.: Arterial tissue in health and disease: experimental data, collagen-based modeling and simulation, including aortic dissection. In: Holzapfel, G.A., Ogden, R.W. (eds.) Biomechanical Modelling at the Molecular, Cellular and Tissue Levels. CISM Courses and Lectures, vol. 508 pp. 259–343. Springer, Wien (2009)

    Google Scholar 

  • Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel, G.A., Niestrawska, J.A., Ogden, R.W., Reinisch, A.J., Schriefl, A.J.: Modelling non-symmetric collagen fibre dispersion in arterial walls. J. R. Soc. Interface 12, 20150188 (2015)

    Article  Google Scholar 

  • Humphrey, J.D., Holzapfel, G.A.: Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J. Biomech. 45, 805–814 (2012)

    Article  Google Scholar 

  • Humphrey, J.D., Taylor, C.A.: Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng. 10, 221–246 (2008)

    Article  Google Scholar 

  • Khan, I.A., Nair, C.K.: Clinical, diagnostic, and management perspectives of aortic dissection. Chest 122, 311–328 (2002)

    Article  Google Scholar 

  • Knipp, B.S., Deeb, G.M., Prager, R.L., Williams, C.Y., Upchurch Jr., G.R., Patel, H.J.: A contemporary analysis of outcomes for operative repair of type a aortic dissection in the united states. Surgery 142, 524–528 (2007)

    Article  Google Scholar 

  • Maher, E., Creane, A., Lally, C., Kelly, D.J.: An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue. J. Mech. Behav. Biomed. Mater. 12, 9–19 (2012)

    Article  Google Scholar 

  • Marino, M., Vairo, G.: Influence of inter-molecular interactions on the elasto-damage mechanics of collagen fibrils: a bottom-up approach towards macroscopic tissue modeling. J. Mech. Phys. Solids 73, 38–54 (2014)

    Article  MathSciNet  Google Scholar 

  • Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83, 1273–1311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Niestrawska, J.A., Regitnig, P., Viertler, C., Cohnert, T.U., Holzapfel, G.A.: Mechanics and microstructure of healthy human aortas and AAA tissues: experimental analysis and modeling. Submitted (2016)

    Google Scholar 

  • Ogden, R.W., Roxburgh, D.G.: A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R. Soc. Lond. A 455, 2861–2877 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Pal, S., Tsamis, A., Pasta, S., D’Amore, A., Gleason, T.G., Vorp, D.A., Maiti, S.: A mechanistic model on the role of radially-running collagen fibers on dissection properties of human ascending thoracic aorta. J. Biomech. 47, 981–988 (2014)

    Article  Google Scholar 

  • Pasta, S., Phillippi, J.A., Gleason, T.G., Vorp, D.A.: Effect of aneurysm on the mechanical dissection properties of the human ascending thoracic aorta. J. Thorac. Cardiovasc. Surg. 143, 460–467 (2012)

    Article  Google Scholar 

  • Pratt, B., Curci, J.: Arterial elastic fiber structure. Function and potential roles in acute aortic dissection. J. Cell Sci. 51, 647–656 (2010)

    Google Scholar 

  • Raina, A., Miehe, C.: A phase-field model for fracture in biological tissues. Biomech. Model. Mechanobiol. 15, 479–496 (2016)

    Google Scholar 

  • Rodríguez, J.F., Cacho, F., Bea, J.A., Doblaré, M.: A stochastic-structurally based three dimensional finite-strain damage model for fibrous soft tissue. J. Mech. Phys. Solids 54, 864–886 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Rodríguez, J.F., Alastrue, V., Doblaré, M.: Finite element implementation of a stochastic three dimensional finite-strain damage model for fibrous soft tissue. Comput. Meth. Appl. Mech. Eng. 197, 946–958 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Schmidt, T., Balzani, D., Holzapfel, G.A.: Statistical approach for a continuum description of damage evolution in soft collagenous tissues. Comput. Meth. Appl. Mech. Eng. 278, 41–61 (2014)

    Article  MathSciNet  Google Scholar 

  • Schriefl, A.J., Zeindlinger, G., Pierce, D.M., Regitnig, P., Holzapfel, G.A.: Determination of the layer-specific distributed collagen fiber orientations in human thoracic and abdominal aortas and common iliac arteries. J. R. Soc. Interface 9, 1275–1286 (2012)

    Article  Google Scholar 

  • Schriefl, A.J., Wolinski, H., Regitnig, P., Kohlwein, S.D., Holzapfel, G.A.: An automated approach for 3D quantification of fibrillar structures in optically cleared soft biological tissues. J. R. Soc. Interface 10, 20120760 (2013)

    Article  Google Scholar 

  • Simo, J.C.: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Meth. Appl. Mech. Eng. 60, 153–173 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Sommer, G., Gasser, T.C., Regitnig, P., Auer, M., Holzapfel, G.A.: Dissection properties of the human aortic media: an experimental study. J. Biomech. Eng. 130, 021007-1–021007-12 (2008)

    Article  Google Scholar 

  • Sommer, G., Sherifova, S., Oberwalder, P.J., Dapunt, O.E., Ursomanno, P.A., DeAnda, A., Griffith, B.E., Holzapfel, G.A.: Mechanical strength of aneurysmatic and dissected human thoracic aortas at different shear loading modes. J. Biomech. (2016) (in press)

    Google Scholar 

  • Thubrikar, M.J., Agali, P., Robicsek, F.: Wall stress as a possible mechanism for the development of transverse intimal tears in aortic dissections. J. Med. Eng. Technol. 23, 127–134 (1999)

    Article  Google Scholar 

  • Tong, J., Cheng, Y., Holzapfel, G.A.: Mechanical assessment of arterial dissection in health and disease: advancements and challenges. J. Biomech. (2016) (in press)

    Google Scholar 

  • Vorp, D.A.: Biomechanics of abdominal aortic aneurysm. J. Biomech. 40, 1887–1902 (2007)

    Article  Google Scholar 

  • Weisbecker, H., Pierce, D.M., Regitnig, P., Holzapfel, G.A.: Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. J. Mech. Behav. Biomed. Mater. 12, 93–106 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank many colleagues for their encouragement and perspective in the modeling of cardiovascular solid mechanics, in particular to Prof. Ray W. Ogden, FRS, FRSE, with whom I had the honor to fruitfully cooperate the last 20 years. I am also pleased to acknowledge the essential support and the helpful discussions of the many former and current doctoral and postdoctoral students who worked with me, performing experiments in the lab on cardiovascular tissues, producing images with microscopes, and elaborating on related models used for numerical simulations of cardiovascular tissues in health and disease. In particular, I would like to thank some of my current coworkers in Graz, i.e., Dr. Anju Babu, Ms. Julia Brandstetter, Mr. Osman Gültekin, Mr. Daniel Haspinger, Dr. Kewei Li, Dr. Sae-Il Murtada, Ms. Justyna A. Niestrawska, Ms. Selda Sherifova, Dr. Gerhard Sommer, and Ms. Bettina Strametz. Finally, I gratefully acknowledge funding from the National Institutes of Health (NIH), research grant no. NIH R01HL117063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard A. Holzapfel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Holzapfel, G.A. (2017). Microstructure and Mechanics of Human Aortas in Health and Disease. In: Holzapfel, G., Ogden, R. (eds) Biomechanics: Trends in Modeling and Simulation. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-41475-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41475-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41473-7

  • Online ISBN: 978-3-319-41475-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics